Cargando…

On kth-Order Slant Weighted Toeplitz Operator

Let β = {β (n)}(n∈ℤ) be a sequence of positive numbers with β (0) = 1, 0 < β (n)/β (n+1) ≤ 1 when n ≥ 0 and 0 < β (n)/β (n−1) ≤ 1 when n ≤ 0. A kth-order slant weighted Toeplitz operator on L (2)(β) is given by U (ϕ) = W (k) M (ϕ), where M (ϕ) is the multiplication on L (2)(β) and W (k) is an...

Descripción completa

Detalles Bibliográficos
Autores principales: Arora, S. C., Kathuria, Ritu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730370/
https://www.ncbi.nlm.nih.gov/pubmed/23970842
http://dx.doi.org/10.1155/2013/960853
_version_ 1782279070774460416
author Arora, S. C.
Kathuria, Ritu
author_facet Arora, S. C.
Kathuria, Ritu
author_sort Arora, S. C.
collection PubMed
description Let β = {β (n)}(n∈ℤ) be a sequence of positive numbers with β (0) = 1, 0 < β (n)/β (n+1) ≤ 1 when n ≥ 0 and 0 < β (n)/β (n−1) ≤ 1 when n ≤ 0. A kth-order slant weighted Toeplitz operator on L (2)(β) is given by U (ϕ) = W (k) M (ϕ), where M (ϕ) is the multiplication on L (2)(β) and W (k) is an operator on L (2)(β) given by W (k) e (nk)(z) = (β (n)/β (nk))e (n)(z), {e (n)(z) = z (k)/β (k)}(k∈ℤ) being the orthonormal basis for L (2)(β). In this paper, we define a kth-order slant weighted Toeplitz matrix and characterise U (ϕ) in terms of this matrix. We further prove some properties of U (ϕ) using this characterisation.
format Online
Article
Text
id pubmed-3730370
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-37303702013-08-22 On kth-Order Slant Weighted Toeplitz Operator Arora, S. C. Kathuria, Ritu ScientificWorldJournal Research Article Let β = {β (n)}(n∈ℤ) be a sequence of positive numbers with β (0) = 1, 0 < β (n)/β (n+1) ≤ 1 when n ≥ 0 and 0 < β (n)/β (n−1) ≤ 1 when n ≤ 0. A kth-order slant weighted Toeplitz operator on L (2)(β) is given by U (ϕ) = W (k) M (ϕ), where M (ϕ) is the multiplication on L (2)(β) and W (k) is an operator on L (2)(β) given by W (k) e (nk)(z) = (β (n)/β (nk))e (n)(z), {e (n)(z) = z (k)/β (k)}(k∈ℤ) being the orthonormal basis for L (2)(β). In this paper, we define a kth-order slant weighted Toeplitz matrix and characterise U (ϕ) in terms of this matrix. We further prove some properties of U (ϕ) using this characterisation. Hindawi Publishing Corporation 2013-07-17 /pmc/articles/PMC3730370/ /pubmed/23970842 http://dx.doi.org/10.1155/2013/960853 Text en Copyright © 2013 S. C. Arora and R. Kathuria. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Arora, S. C.
Kathuria, Ritu
On kth-Order Slant Weighted Toeplitz Operator
title On kth-Order Slant Weighted Toeplitz Operator
title_full On kth-Order Slant Weighted Toeplitz Operator
title_fullStr On kth-Order Slant Weighted Toeplitz Operator
title_full_unstemmed On kth-Order Slant Weighted Toeplitz Operator
title_short On kth-Order Slant Weighted Toeplitz Operator
title_sort on kth-order slant weighted toeplitz operator
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730370/
https://www.ncbi.nlm.nih.gov/pubmed/23970842
http://dx.doi.org/10.1155/2013/960853
work_keys_str_mv AT arorasc onkthorderslantweightedtoeplitzoperator
AT kathuriaritu onkthorderslantweightedtoeplitzoperator