Cargando…

ifn-γ-dependent secretion of IL-10 from Th1 cells and microglia/macrophages contributes to functional recovery after spinal cord injury

Transfer of type-1 helper T-conditioned (Th1-conditioned) cells promotes functional recovery with enhanced axonal remodeling after spinal cord injury (SCI). This study explored the molecular mechanisms underlying the beneficial effects of pro-inflammatory Th1-conditioned cells after SCI. The effect...

Descripción completa

Detalles Bibliográficos
Autores principales: Ishii, H, Tanabe, S, Ueno, M, Kubo, T, Kayama, H, Serada, S, Fujimoto, M, Takeda, K, Naka, T, Yamashita, T
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730408/
https://www.ncbi.nlm.nih.gov/pubmed/23828573
http://dx.doi.org/10.1038/cddis.2013.234
Descripción
Sumario:Transfer of type-1 helper T-conditioned (Th1-conditioned) cells promotes functional recovery with enhanced axonal remodeling after spinal cord injury (SCI). This study explored the molecular mechanisms underlying the beneficial effects of pro-inflammatory Th1-conditioned cells after SCI. The effect of Th1-conditioned cells from interferon-γ (ifn-γ) knockout mice (ifn-γ(−/−) Th1 cells) on the recovery after SCI was reduced. Transfer of Th1-conditioned cells led to the activation of microglia (MG) and macrophages (MΦs), with interleukin 10 (IL-10) upregulation. This upregulation of IL-10 was reduced when ifn-γ(−/−) Th1 cells were transferred. Intrathecal neutralization of IL-10 in the spinal cord attenuated the effects of Th1-conditioned cells. Further, IL-10 is robustly secreted from Th1-conditioned cells in an ifn-γ-dependent manner. Th1-conditioned cells from interleukin 10 knockout (il-10(−/−)) mice had no effects on recovery from SCI. These findings demonstrate that ifn-γ-dependent secretion of IL-10 from Th1 cells, as well as native MG/MΦs, is required for the promotion of motor recovery after SCI.