Cargando…

Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve

The use of the visual system played a major role in the elucidation of molecular mechanisms controlling axonal regeneration in the injured CNS after trauma. In this model, CNTF was shown to be the most potent known neurotrophic factor for axonal regeneration in the injured optic nerve. To clarify th...

Descripción completa

Detalles Bibliográficos
Autores principales: Pernet, V, Joly, S, Jordi, N, Dalkara, D, Guzik-Kornacka, A, Flannery, J G, Schwab, M E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730436/
https://www.ncbi.nlm.nih.gov/pubmed/23868067
http://dx.doi.org/10.1038/cddis.2013.266
_version_ 1782279084468862976
author Pernet, V
Joly, S
Jordi, N
Dalkara, D
Guzik-Kornacka, A
Flannery, J G
Schwab, M E
author_facet Pernet, V
Joly, S
Jordi, N
Dalkara, D
Guzik-Kornacka, A
Flannery, J G
Schwab, M E
author_sort Pernet, V
collection PubMed
description The use of the visual system played a major role in the elucidation of molecular mechanisms controlling axonal regeneration in the injured CNS after trauma. In this model, CNTF was shown to be the most potent known neurotrophic factor for axonal regeneration in the injured optic nerve. To clarify the role of the downstream growth regulator Stat3, we analyzed axonal regeneration and neuronal survival after an optic nerve crush in adult mice. The infection of retinal ganglion cells with adeno-associated virus serotype 2 (AAV2) containing wild-type (Stat3-wt) or constitutively active (Stat3-ca) Stat3 cDNA promoted axonal regeneration in the injured optic nerve. Axonal growth was analyzed in whole-mounted optic nerves in three dimensions (3D) after tissue clearing. Surprisingly, with AAV2.Stat3-ca stimulation, axons elongating beyond the lesion site displayed very irregular courses, including frequent U-turns, suggesting massive directionality and guidance problems. The pharmacological blockade of ROCK, a key signaling component for myelin-associated growth inhibitors, reduced axonal U-turns and potentiated AAV2.Stat3-ca-induced regeneration. Similar results were obtained after the sustained delivery of CNTF in the axotomized retina. These results show the important role of Stat3 in the activation of the neuronal growth program for regeneration, and they reveal that axonal misguidance is a key limiting factor that can affect long-distance regeneration and target interaction after trauma in the CNS. The correction of axonal misguidance was associated with improved long-distance axon regeneration in the injured adult CNS.
format Online
Article
Text
id pubmed-3730436
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-37304362013-08-01 Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve Pernet, V Joly, S Jordi, N Dalkara, D Guzik-Kornacka, A Flannery, J G Schwab, M E Cell Death Dis Original Article The use of the visual system played a major role in the elucidation of molecular mechanisms controlling axonal regeneration in the injured CNS after trauma. In this model, CNTF was shown to be the most potent known neurotrophic factor for axonal regeneration in the injured optic nerve. To clarify the role of the downstream growth regulator Stat3, we analyzed axonal regeneration and neuronal survival after an optic nerve crush in adult mice. The infection of retinal ganglion cells with adeno-associated virus serotype 2 (AAV2) containing wild-type (Stat3-wt) or constitutively active (Stat3-ca) Stat3 cDNA promoted axonal regeneration in the injured optic nerve. Axonal growth was analyzed in whole-mounted optic nerves in three dimensions (3D) after tissue clearing. Surprisingly, with AAV2.Stat3-ca stimulation, axons elongating beyond the lesion site displayed very irregular courses, including frequent U-turns, suggesting massive directionality and guidance problems. The pharmacological blockade of ROCK, a key signaling component for myelin-associated growth inhibitors, reduced axonal U-turns and potentiated AAV2.Stat3-ca-induced regeneration. Similar results were obtained after the sustained delivery of CNTF in the axotomized retina. These results show the important role of Stat3 in the activation of the neuronal growth program for regeneration, and they reveal that axonal misguidance is a key limiting factor that can affect long-distance regeneration and target interaction after trauma in the CNS. The correction of axonal misguidance was associated with improved long-distance axon regeneration in the injured adult CNS. Nature Publishing Group 2013-07 2013-07-18 /pmc/articles/PMC3730436/ /pubmed/23868067 http://dx.doi.org/10.1038/cddis.2013.266 Text en Copyright © 2013 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Original Article
Pernet, V
Joly, S
Jordi, N
Dalkara, D
Guzik-Kornacka, A
Flannery, J G
Schwab, M E
Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve
title Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve
title_full Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve
title_fullStr Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve
title_full_unstemmed Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve
title_short Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve
title_sort misguidance and modulation of axonal regeneration by stat3 and rho/rock signaling in the transparent optic nerve
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730436/
https://www.ncbi.nlm.nih.gov/pubmed/23868067
http://dx.doi.org/10.1038/cddis.2013.266
work_keys_str_mv AT pernetv misguidanceandmodulationofaxonalregenerationbystat3andrhorocksignalinginthetransparentopticnerve
AT jolys misguidanceandmodulationofaxonalregenerationbystat3andrhorocksignalinginthetransparentopticnerve
AT jordin misguidanceandmodulationofaxonalregenerationbystat3andrhorocksignalinginthetransparentopticnerve
AT dalkarad misguidanceandmodulationofaxonalregenerationbystat3andrhorocksignalinginthetransparentopticnerve
AT guzikkornackaa misguidanceandmodulationofaxonalregenerationbystat3andrhorocksignalinginthetransparentopticnerve
AT flanneryjg misguidanceandmodulationofaxonalregenerationbystat3andrhorocksignalinginthetransparentopticnerve
AT schwabme misguidanceandmodulationofaxonalregenerationbystat3andrhorocksignalinginthetransparentopticnerve