Cargando…

Fluoro-edenite Fibers Induce Expression of Hsp70 and Inflammatory Response

Many asbestos-like mineral fibers have been detected in the air of mountainous and volcanic areas of Italy and other parts of the world. These fibers have been suspected to be the cause of increased incidences of lung cancer and other lung diseases in these areas. However, the mechanisms of the cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Cardile, Venera, Lombardo, Laura, Belluso, Elena, Panico, Annamaria, Renis, Marcella, Gianfagna, Antonio, Balazy, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731634/
https://www.ncbi.nlm.nih.gov/pubmed/17911657
_version_ 1782279177210167296
author Cardile, Venera
Lombardo, Laura
Belluso, Elena
Panico, Annamaria
Renis, Marcella
Gianfagna, Antonio
Balazy, Michael
author_facet Cardile, Venera
Lombardo, Laura
Belluso, Elena
Panico, Annamaria
Renis, Marcella
Gianfagna, Antonio
Balazy, Michael
author_sort Cardile, Venera
collection PubMed
description Many asbestos-like mineral fibers have been detected in the air of mountainous and volcanic areas of Italy and other parts of the world. These fibers have been suspected to be the cause of increased incidences of lung cancer and other lung diseases in these areas. However, the mechanisms of the cellular response and defense following exposure to these microscopic fibers have not been characterized. We continue to study these mechanisms to be able to propose preventive strategies in large populations. The objective of the present study was to determine comparatively biological responses of mesothelial Met-5A and monocyte-macrophage J774 cells following exposure to two types of fluoro-edenite fibers having low and high iron content (labeled 19 and 27, respectively) obtained from Biancavilla (Sicily, Italy). The reference fiber was a non-iron fibrous tremolite from Val di Susa (Piemonte, Italy). The cells were treated with 5, 50, and 100 μg of fibrous matter per 1 ml for 72 hr. We identified several key mechanisms by which cells responded and counteracted the injury induced by these fibers. The fibers caused induction of the heat shock protein 70 (Hsp70), stimulated formation of reactive oxygen species (detected by using DCFH-DA as a fluorescent probe) and NO(•) (measured as nitrite). Exposure of cells to the fibers induced lactate dehydrogenase activity and decreased viability. The fluoro-endenite type 27 was the most potent fiber tested, which indicated that iron and possibly manganese contribute significantly to this fiber toxicity. The J774 cells were more sensitive to fluoro-edenite than Met-5A cells suggesting that the primary site of the fiber-induced inflammatory response could be the macrophage rather than the pulmonary epithelium. Fluoro-edenite produces more biological alterations with respect to non-iron tremolite. Hsp70 and free radicals could be important factors in the context of mineral fiber-induced acute lung injury leading possibly to mutagenic effects. We anticipate that pharmacological blockade of the fiber-dependent cellular responses could in long term offer preventive approach to combat lung diseases induced by these fibers.
format Online
Article
Text
id pubmed-3731634
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-37316342013-08-02 Fluoro-edenite Fibers Induce Expression of Hsp70 and Inflammatory Response Cardile, Venera Lombardo, Laura Belluso, Elena Panico, Annamaria Renis, Marcella Gianfagna, Antonio Balazy, Michael Int J Environ Res Public Health Articles Many asbestos-like mineral fibers have been detected in the air of mountainous and volcanic areas of Italy and other parts of the world. These fibers have been suspected to be the cause of increased incidences of lung cancer and other lung diseases in these areas. However, the mechanisms of the cellular response and defense following exposure to these microscopic fibers have not been characterized. We continue to study these mechanisms to be able to propose preventive strategies in large populations. The objective of the present study was to determine comparatively biological responses of mesothelial Met-5A and monocyte-macrophage J774 cells following exposure to two types of fluoro-edenite fibers having low and high iron content (labeled 19 and 27, respectively) obtained from Biancavilla (Sicily, Italy). The reference fiber was a non-iron fibrous tremolite from Val di Susa (Piemonte, Italy). The cells were treated with 5, 50, and 100 μg of fibrous matter per 1 ml for 72 hr. We identified several key mechanisms by which cells responded and counteracted the injury induced by these fibers. The fibers caused induction of the heat shock protein 70 (Hsp70), stimulated formation of reactive oxygen species (detected by using DCFH-DA as a fluorescent probe) and NO(•) (measured as nitrite). Exposure of cells to the fibers induced lactate dehydrogenase activity and decreased viability. The fluoro-endenite type 27 was the most potent fiber tested, which indicated that iron and possibly manganese contribute significantly to this fiber toxicity. The J774 cells were more sensitive to fluoro-edenite than Met-5A cells suggesting that the primary site of the fiber-induced inflammatory response could be the macrophage rather than the pulmonary epithelium. Fluoro-edenite produces more biological alterations with respect to non-iron tremolite. Hsp70 and free radicals could be important factors in the context of mineral fiber-induced acute lung injury leading possibly to mutagenic effects. We anticipate that pharmacological blockade of the fiber-dependent cellular responses could in long term offer preventive approach to combat lung diseases induced by these fibers. Molecular Diversity Preservation International (MDPI) 2007-03 2007-09-30 /pmc/articles/PMC3731634/ /pubmed/17911657 Text en © 2007 MDPI All rights reserved.
spellingShingle Articles
Cardile, Venera
Lombardo, Laura
Belluso, Elena
Panico, Annamaria
Renis, Marcella
Gianfagna, Antonio
Balazy, Michael
Fluoro-edenite Fibers Induce Expression of Hsp70 and Inflammatory Response
title Fluoro-edenite Fibers Induce Expression of Hsp70 and Inflammatory Response
title_full Fluoro-edenite Fibers Induce Expression of Hsp70 and Inflammatory Response
title_fullStr Fluoro-edenite Fibers Induce Expression of Hsp70 and Inflammatory Response
title_full_unstemmed Fluoro-edenite Fibers Induce Expression of Hsp70 and Inflammatory Response
title_short Fluoro-edenite Fibers Induce Expression of Hsp70 and Inflammatory Response
title_sort fluoro-edenite fibers induce expression of hsp70 and inflammatory response
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731634/
https://www.ncbi.nlm.nih.gov/pubmed/17911657
work_keys_str_mv AT cardilevenera fluoroedenitefibersinduceexpressionofhsp70andinflammatoryresponse
AT lombardolaura fluoroedenitefibersinduceexpressionofhsp70andinflammatoryresponse
AT bellusoelena fluoroedenitefibersinduceexpressionofhsp70andinflammatoryresponse
AT panicoannamaria fluoroedenitefibersinduceexpressionofhsp70andinflammatoryresponse
AT renismarcella fluoroedenitefibersinduceexpressionofhsp70andinflammatoryresponse
AT gianfagnaantonio fluoroedenitefibersinduceexpressionofhsp70andinflammatoryresponse
AT balazymichael fluoroedenitefibersinduceexpressionofhsp70andinflammatoryresponse