Cargando…
HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation m...
Autores principales: | Wiecki, Thomas V., Sofer, Imri, Frank, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731670/ https://www.ncbi.nlm.nih.gov/pubmed/23935581 http://dx.doi.org/10.3389/fninf.2013.00014 |
Ejemplares similares
-
Simultaneous Hierarchical Bayesian Parameter Estimation for Reinforcement Learning and Drift Diffusion Models: a Tutorial and Links to Neural Data
por: Pedersen, Mads L., et al.
Publicado: (2020) -
HDDM Hardware Evaluation for Robust Interference Mitigation †
por: Garzia, Fabio, et al.
Publicado: (2020) -
Motor speed does not impact the drift rate: a computational HDDM approach to differentiate cognitive and motor speed
por: Sandry, Joshua, et al.
Publicado: (2022) -
Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model
por: Bitzer, Sebastian, et al.
Publicado: (2014) -
Hierarchical drift diffusion modeling uncovers multisensory benefit in numerosity discrimination tasks
por: Chau, Edwin, et al.
Publicado: (2021)