Cargando…
Using Manifold Learning for Atlas Selection in Multi-Atlas Segmentation
Multi-atlas segmentation has been widely used to segment various anatomical structures. The success of this technique partly relies on the selection of atlases that are best mapped to a new target image after registration. Recently, manifold learning has been proposed as a method for atlas selection...
Autores principales: | Hoang Duc, Albert K., Modat, Marc, Leung, Kelvin K., Cardoso, M. Jorge, Barnes, Josephine, Kadir, Timor, Ourselin, Sébastien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732273/ https://www.ncbi.nlm.nih.gov/pubmed/23936376 http://dx.doi.org/10.1371/journal.pone.0070059 |
Ejemplares similares
-
CT synthesis in the head & neck region for PET/MR attenuation correction: an iterative multi-atlas approach
por: Burgos, Ninon, et al.
Publicado: (2015) -
Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion
por: Ma, Da, et al.
Publicado: (2014) -
Atrophy Rates in Asymptomatic Amyloidosis: Implications for Alzheimer Prevention Trials
por: Andrews, K. Abigail, et al.
Publicado: (2013) -
aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data
por: Niedworok, Christian J., et al.
Publicado: (2016) -
Measuring brain atrophy with a generalized formulation of the boundary shift integral()
por: Prados, Ferran, et al.
Publicado: (2015)