Cargando…
Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior
Recently, evidence suggests that dark CO(2) fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732383/ https://www.ncbi.nlm.nih.gov/pubmed/23330917 http://dx.doi.org/10.1111/1574-6941.12073 |
Sumario: | Recently, evidence suggests that dark CO(2) fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating dark CO(2) fixation in the tropical Atlantic, we quantified functional genes indicative for CO(2) fixation. We used a Q-PCR-based assay targeting the bifunctional acetyl-CoA/propionyl-CoA carboxylase (accA subunit), a key enzyme powering inter alia the 3-hydroxypropionate/4-hydroxybutyrate cycle (HP/HB) and the archaeal ammonia monooxygenase (amoA). Quantification of accA-like genes revealed a consistent depth profile in the upper mesopelagial with increasing gene abundances from subsurface layers towards the oxygen minimum zone (OMZ), coinciding with an increase in archaeal amoA gene abundance. Gene abundance profiles of metabolic marker genes (accA, amoA) were correlated with thaumarchaeal 16S rRNA gene abundances as well as CO(2) fixation rates to link the genetic potential to actual rate measurements. AccA gene abundances correlated with archaeal amoA gene abundance throughout the water column (r(2) = 0.309, P < 0.0001). Overall, a substantial genetic predisposition of CO(2) fixation was present in the dark realm of the tropical Atlantic in both Archaea and Bacteria. Hence, dark ocean CO(2) fixation might be more widespread among prokaryotes inhabiting the oxygenated water column of the ocean's interior than hitherto assumed. |
---|