Cargando…
Effects of gamma irradiation on microbial load and quality characteristics of veal
BACKGROUND: Veal is a rich nutrient medium that provides a suitable environment for proliferation of veal spoiling microorganisms and common food-borne pathogens. In this study, the effects of irradiation on the veal microbiological quality and half life of minced beef during chilled storage was inv...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732889/ https://www.ncbi.nlm.nih.gov/pubmed/23930256 http://dx.doi.org/10.4103/2277-9175.107967 |
Sumario: | BACKGROUND: Veal is a rich nutrient medium that provides a suitable environment for proliferation of veal spoiling microorganisms and common food-borne pathogens. In this study, the effects of irradiation on the veal microbiological quality and half life of minced beef during chilled storage was investigated. MATERIALS AND METHODS: Twenty samples of minced veal were irradiated with doses of 2, 5, 7, and 10 kGy (Cobalt-60, gamma cell 220) and evaluated for their microbiological quality up to 10 days. RESULTS: The results showed that gamma irradiation reduced the number of microorganisms in all the irradiated minced veal samples, with 2, 5, 7, and 10 kGy (P < 0.01). Moreover, the half life of the samples were increased considerably (P < 0.01). In addition, the results indicated that there was a significant difference in the number of coliformes between untreated and irradiated samples (P < 0.05). While, Staphylococcus aureus could not be detected in the irradiated samples with doses of 7 and 10 kGy. CONCLUSION: These results indicated that irradiation could be employed as an effective mean to inactivate common food-borne pathogens namely S. aureus and increases the half life of veal. |
---|