Cargando…
Assessment of Human Sleep Depth Is Being De-Standardized by Recently Advised EEG Electrode Locations
Human sleep depth was traditionally assessed by scoring electro-encephalographic slow-wave amplitudes at the globally standardized C4-M1 electrode derivation. Since 2007, the American Association of Sleep Medicine (AASM) has accepted three additional derivations for the same purpose. These might wel...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733975/ https://www.ncbi.nlm.nih.gov/pubmed/23940727 http://dx.doi.org/10.1371/journal.pone.0071234 |
Sumario: | Human sleep depth was traditionally assessed by scoring electro-encephalographic slow-wave amplitudes at the globally standardized C4-M1 electrode derivation. Since 2007, the American Association of Sleep Medicine (AASM) has accepted three additional derivations for the same purpose. These might well differ in slow wave amplitudes which would bias the scorings. Some derivations might also introduce large inter-individual variability. We compared mean and variability of slow wave amplitudes between six derivations including the four AASM ones. Slow wave amplitudes in those derivations were simultaneously measured using automated analysis in 29 patients. Each amplitude was divided by the average from the six derivations, thus removing shared factors such as age, gender and sleep depth while retaining factors that differ between the derivations such as caused by local skull characteristics, electrode distance and neuronal dipole orientation. The remaining inter-individual variability differed significantly and up to a factor of two between the AASM derivations. The amplitudes differed significantly and up to 60% between the AASM derivations, causing substantial scoring bias between centres using different derivations. The resulting de-standardization most likely affects any patient group because the amplitude differences were consistent over diagnoses, genders, and age. Derivation-dependent amplitude thresholds were proposed to reduce the scoring bias. However, it would be better to settle on just one derivation, for instance Cz-Oz or Fpz-Cz because these have lowest variability while matching the traditional C4-M1 amplitudes. |
---|