Cargando…
Dopamine receptor 3 might be an essential molecule in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity
BACKGROUND: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson’s disease (PD)-like neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) via its oxidized product, 1-methyl-4-phenylpyridinium (MPP+), which is transported by the dopamine (DA) transpo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734004/ https://www.ncbi.nlm.nih.gov/pubmed/23902361 http://dx.doi.org/10.1186/1471-2202-14-76 |
Sumario: | BACKGROUND: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson’s disease (PD)-like neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) via its oxidized product, 1-methyl-4-phenylpyridinium (MPP+), which is transported by the dopamine (DA) transporter into DA nerve terminals. DA receptor subtype 3 (D3 receptor) participates in neurotransmitter transport, gene regulation in the DA system, physiological accommodation via G protein-coupled superfamily receptors and other physiological processes in the nervous system. This study investigated the possible correlation between D3 receptors and MPTP-induced neurotoxicity. A series of behavioral experiments and histological analyses were conducted in D3 receptor-deficient mice, using an MPTP-induced model of PD. RESULTS: After the fourth MPTP injection, wild-type animals that received 15 mg/kg per day displayed significant neurotoxin-related bradykinesia. D3 receptor-deficient mice displayed attenuated MPTP-induced locomotor activity changes. Consistent with the behavioral observations, further neurohistological assessment showed that MPTP-induced neuronal damage in the SNpc was reduced in D3 receptor-deficient mice. CONCLUSIONS: Our study indicates that the D3 receptor might be an essential molecule in MPTP-induced PD and provides a new molecular mechanism for MPTP neurotoxicity. |
---|