Cargando…

A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair

DNA double-strand breaks (DSBs) are the most toxic of all genomic insults, and pathways dealing with their signaling and repair are crucial to prevent cancer and for immune system development. Despite intense investigations, our knowledge of these pathways has been technically limited by our inabili...

Descripción completa

Detalles Bibliográficos
Autores principales: Britton, Sébastien, Coates, Julia, Jackson, Stephen P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734090/
https://www.ncbi.nlm.nih.gov/pubmed/23897892
http://dx.doi.org/10.1083/jcb.201303073
Descripción
Sumario:DNA double-strand breaks (DSBs) are the most toxic of all genomic insults, and pathways dealing with their signaling and repair are crucial to prevent cancer and for immune system development. Despite intense investigations, our knowledge of these pathways has been technically limited by our inability to detect the main repair factors at DSBs in cells. In this paper, we present an original method that involves a combination of ribonuclease- and detergent-based preextraction with high-resolution microscopy. This method allows direct visualization of previously hidden repair complexes, including the main DSB sensor Ku, at virtually any type of DSB, including those induced by anticancer agents. We demonstrate its broad range of applications by coupling it to laser microirradiation, super-resolution microscopy, and single-molecule counting to investigate the spatial organization and composition of repair factories. Furthermore, we use our method to monitor DNA repair and identify mechanisms of repair pathway choice, and we show its utility in defining cellular sensitivities and resistance mechanisms to anticancer agents.