Cargando…
Analysis and Prediction of Highly Effective Antiviral Peptides Based on Random Forests
The goal of this study was to examine and predict antiviral peptides. Although antiviral peptides hold great potential in antiviral drug discovery, little is done in antiviral peptide prediction. In this study, we demonstrate that a physicochemical model using random forests outperform in distinguis...
Autores principales: | Chang, Kuan Y., Yang, Je-Ruei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734225/ https://www.ncbi.nlm.nih.gov/pubmed/23940542 http://dx.doi.org/10.1371/journal.pone.0070166 |
Ejemplares similares
-
AVPpred: collection and prediction of highly effective antiviral peptides
por: Thakur, Nishant, et al.
Publicado: (2012) -
A Large-Scale Structural Classification of Antimicrobial Peptides
por: Lee, Hao-Ting, et al.
Publicado: (2015) -
Analysis and Prediction of the Critical Regions of Antimicrobial Peptides Based on Conditional Random Fields
por: Chang, Kuan Y., et al.
Publicado: (2015) -
AIPpred: Sequence-Based Prediction of Anti-inflammatory Peptides Using Random Forest
por: Manavalan, Balachandran, et al.
Publicado: (2018) -
Random forest-based prediction of stroke outcome
por: Fernandez-Lozano, Carlos, et al.
Publicado: (2021)