Cargando…

Screening the Biosphere: The Fungicolous Fungus Trichoderma phellinicola, a Prolific Source of Hypophellins, New 17-, 18-, 19-, and 20-Residue Peptaibiotics1)

To investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened a specimen of the fungicolous fungus Trichoderma phellinicola (syn. Hypocrea phellinicola) growing on its natural host Phellinus ferruginosus. Results revealed that a particular group of...

Descripción completa

Detalles Bibliográficos
Autores principales: Röhrich, Christian René, Iversen, Anita, Jaklitsch, Walter Michael, Voglmayr, Hermann, Vilcinskas, Andreas, Nielsen, Kristian Fog, Thrane, Ulf, von Döhren, Hans, Brückner, Hans, Degenkolb, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734673/
https://www.ncbi.nlm.nih.gov/pubmed/23681726
http://dx.doi.org/10.1002/cbdv.201200339
Descripción
Sumario:To investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened a specimen of the fungicolous fungus Trichoderma phellinicola (syn. Hypocrea phellinicola) growing on its natural host Phellinus ferruginosus. Results revealed that a particular group of non-ribosomal antibiotic polypeptides, peptaibiotics, which contain the non-proteinogenic marker amino acid, α-aminoisobutyric acid, was biosynthesized in the natural habitat by the fungicolous producer and, consequently, released into the host. By means of liquid chromatography coupled to electrospray high-resolution time-of-flight mass spectrometry, we detected ten 20-residue peptaibols in the specimen. Sequences of peptaibiotics found in vivo were independently confirmed by analyzing the peptaibiome of an agar plate culture of T. phellinicola CBS 119283 (ex-type) grown under laboratory conditions. Notably, this strain could be identified as a potent producer of 39 new 17-, 18-, and 19-residue peptaibiotics, which display the same building scheme as the 20-residue peptaibols found in the specimen. Two of the 19-residue peptaibols are tentatively assigned to carry tyrosinol, a novel C-terminal residue, as deduced from high-resolution tandem mass-spectrometry data. For the new peptaibiotics produced by T. phellinicola, the name ‘hypophellin(s)’, based on the teleomorph name, is introduced.