Cargando…

Colonization by Chironomidae Larvae in Decomposition Leaves of Eichhornia azurea in a Lentic System in Southeastern Brazil

The objective of this study was to analyze the colonization of Chironomidae (Diptera) larvae during the decomposition of Eichhornia azurea (Swartz) Kunth (Commelinales: Pontederiaceae) leaves in a lake in southeastern Brazil in two seasons of the year. The experiment was conducted from September to...

Descripción completa

Detalles Bibliográficos
Autores principales: da Silveira, Lidimara Souza, Martins, Renato Tavares, da Silveira, Guilherme Augusto, Grazul, Richard Michael, Lobo, Danielle Pinheiro, da Gama Alves, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: University of Wisconsin Library 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735111/
https://www.ncbi.nlm.nih.gov/pubmed/23886040
http://dx.doi.org/10.1673/031.013.2001
Descripción
Sumario:The objective of this study was to analyze the colonization of Chironomidae (Diptera) larvae during the decomposition of Eichhornia azurea (Swartz) Kunth (Commelinales: Pontederiaceae) leaves in a lake in southeastern Brazil in two seasons of the year. The experiment was conducted from September to November 2007 and February to April 2008. In each period, 21 litter bags were used, each containing 10 g of dried leaves. Three bags were removed after 2, 5, 8, 12, 25, 45, and 65 days of colonization. The decomposition rate of the E. azurea leaves was rapid in both seasons, with no significant difference between them. The Chironomidae showed higher density than the other invertebrates. Goeldichironomus, Tonytarsus, and Corynoneura were the most abundant genera of Chironomidae. The invertebrate density increased during the experiment, differing within days but not between seasons. The faunal composition differed between the decomposition phases (initial and final), but did not differ between the seasons (dry and wet). The taxa Ablabesmyia, Caladomyia, Chironomus, Goeldichironomus, and Parachironomus were the most closely related to the final days of the experiment. Litter was the main food item found in the gut contents of the organisms of all the genera analyzed, both at the beginning and end of the decomposition. We believe that the feeding activity combined with the high larval density is an important factor contributing to the rapid decomposition of the E. azurea leaves. In conclusion, the succession process along the detritus chain of E. azurea was more important in structuring the assemblage of Chironomidae larvae than seasonal variations.