Cargando…
A Mouse Model for Human Norovirus
Human noroviruses (HuNoVs) cause significant morbidity and mortality worldwide. However, despite substantial efforts, a small-animal model for HuNoV has not been described to date. Since “humanized” mice have been successfully used to study human-tropic pathogens in the past, we challenged BALB/c mi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Microbiology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735125/ https://www.ncbi.nlm.nih.gov/pubmed/23860770 http://dx.doi.org/10.1128/mBio.00450-13 |
Sumario: | Human noroviruses (HuNoVs) cause significant morbidity and mortality worldwide. However, despite substantial efforts, a small-animal model for HuNoV has not been described to date. Since “humanized” mice have been successfully used to study human-tropic pathogens in the past, we challenged BALB/c mice deficient in recombination activation gene (Rag) 1 or 2 and common gamma chain (γc) (Rag-γc) engrafted with human CD34(+) hematopoietic stem cells, nonengrafted siblings, and immunocompetent wild-type controls with pooled stool isolates from patients positive for HuNoV. Surprisingly, both humanized and nonhumanized BALB/c Rag-γc-deficient mice supported replication of a GII.4 strain of HuNoV, as indicated by increased viral loads over input. In contrast, immunocompetent wild-type BALB/c mice were not infected. An intraperitoneal route of infection and the BALB/c genetic background were important for facilitating a subclinical HuNoV infection of Rag-γc-deficient mice. Expression of structural and nonstructural proteins was detected in cells with macrophage-like morphology in the spleens and livers of BALB/c Rag-γc-deficient mice, confirming the ability of HuNoV to replicate in a mouse model. In summary, HuNoV replication in BALB/c Rag-γc-deficient mice is dependent on the immune-deficient status of the host but not on the presence of human immune cells and provides the first genetically manipulable small-animal model for studying HuNoV infection. |
---|