Cargando…

Transplant of stunned donor hearts rescued by pharmacological stress echocardiography: a “proof of concept” report

BACKGROUND: Due to the shortage of donor hearts, the criteria for acceptance have been considerably expanded. Hearts with regional or global left ventricular dysfunction are excluded from donation, but stress echo might be useful to identify patients with reversible wall motion abnormalities, potent...

Descripción completa

Detalles Bibliográficos
Autores principales: Bombardini, Tonino, Gherardi, Sonia, Leone, Ornella, Sicari, Rosa, Picano, Eugenio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735394/
https://www.ncbi.nlm.nih.gov/pubmed/23915276
http://dx.doi.org/10.1186/1476-7120-11-27
Descripción
Sumario:BACKGROUND: Due to the shortage of donor hearts, the criteria for acceptance have been considerably expanded. Hearts with regional or global left ventricular dysfunction are excluded from donation, but stress echo might be useful to identify patients with reversible wall motion abnormalities, potentially eligible for donation. METHODS: Six marginal candidate donors (mean age, 40 ± 13 years; three men) were enrolled. Resting echocardiography showed in all subjects a LV ejection fraction ≥ 45% (mean 51 ± 5%), but multiple risk factors were present. All donors had either global or discrete wall motion abnormalities: Wall Motion Score Index (WMSI) rest = 1.33 ± 0.25. Stress echocardiography was performed with the dipyridamole high dose of 0.84 mg/kg given over 6 min. RESULTS: The stress echo results were abnormal in three donors (WMSI rest = 1.51 ± 0.19 vs peak = 1.41 ± 0.30). These hearts were excluded from donation and cardiac pathology verification was available in two cases of confirmed LV myocardial fibrosis and/or severe coronary stenosis. The remaining three hearts improved during stress (WMSI rest = 1.15 ± 0.13 vs peak = 1.04 ± 0.06) and were transplanted uneventfully. Recipients (three males, mean age 53 ± 4 years) underwent post-TX coronary angiography, IVUS and endomyocardial biopsies. No recipient had primary graft failure, and all showed normal coronary angiography and normal LV function (EF = 57 ± 6%; WMSI = 1 ± 0) at 1-month post-TX. The recipients were alive at 12-month median follow-up. CONCLUSIONS: Dipyridamole stress echo performed in brain-dead potential donors with LV resting global or discrete wall motion abnormalities identifies hearts with severe morphologic abnormalities excluded from donation (with fixed response during stress echo) from hearts eligible for donation, showing improvement in regional wall motion during stress (viability response) and normal function and coronary anatomy following transplantation.