Cargando…

The feasibility of nurse practitioner-performed, telementored lung telesonography with remote physician guidance - ‘a remote virtual mentor’

BACKGROUND: Point-of-care ultrasound (POC-US) use is increasingly common as equipment costs decrease and availability increases. Despite the utility of POC-US in trained hands, there are many situations wherein patients could benefit from the added safety of POC-US guidance, yet trained users are un...

Descripción completa

Detalles Bibliográficos
Autores principales: Biegler, Nancy, McBeth, Paul B, Tiruta, Corina, Hamilton, Douglas R, Xiao, Zhengwen, Crawford, Innes, Tevez-Molina, Martha, Miletic, Nat, Ball, Chad G, Pian, Linping, Kirkpatrick, Andrew W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735420/
https://www.ncbi.nlm.nih.gov/pubmed/23805869
http://dx.doi.org/10.1186/2036-7902-5-5
Descripción
Sumario:BACKGROUND: Point-of-care ultrasound (POC-US) use is increasingly common as equipment costs decrease and availability increases. Despite the utility of POC-US in trained hands, there are many situations wherein patients could benefit from the added safety of POC-US guidance, yet trained users are unavailable. We therefore hypothesized that currently available and economic ‘off-the-shelf’ technologies could facilitate remote mentoring of a nurse practitioner (NP) to assess for recurrent pneumothoraces (PTXs) after chest tube removal. METHODS: The simple remote telementored ultrasound system consisted of a handheld ultrasound machine, head-mounted video camera, microphone, and software on a laptop computer. The video output of the handheld ultrasound machine and a macroscopic view of the NP's hands were displayed to a remote trauma surgeon mentor. The mentor instructed the NP on probe position and US machine settings and provided real-time guidance and image interpretation via encrypted video conferencing software using an Internet service provider. Thirteen pleural exams after chest tube removal were conducted. RESULTS: Thirteen patients (26 lung fields) were examined. The remote exam was possible in all cases with good connectivity including one trans-Atlantic interpretation. Compared to the subsequent upright chest radiograph, there were 4 true-positive remotely diagnosed PTXs, 2 false-negative diagnoses, and 20 true-negative diagnoses for 66% sensitivity, 100% specificity, and 92% accuracy for remotely guided chest examination. CONCLUSIONS: Remotely guiding a NP to perform thoracic ultrasound examinations after tube thoracostomy removal can be simply and effectively performed over encrypted commercial software using low-cost hardware. As informatics constantly improves, mentored remote examinations may further empower clinical care providers in austere settings.