Cargando…
Characterization of the Molecular Interplay between Moraxella catarrhalis and Human Respiratory Tract Epithelial Cells
Moraxella catarrhalis is a mucosal pathogen that causes childhood otitis media and exacerbations of chronic obstructive pulmonary disease in adults. During the course of infection, M. catarrhalis needs to adhere to epithelial cells of different host niches such as the nasopharynx and lungs, and cons...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735583/ https://www.ncbi.nlm.nih.gov/pubmed/23936538 http://dx.doi.org/10.1371/journal.pone.0072193 |
_version_ | 1782279677985947648 |
---|---|
author | de Vries, Stefan P. W. Eleveld, Marc J. Hermans, Peter W. M. Bootsma, Hester J. |
author_facet | de Vries, Stefan P. W. Eleveld, Marc J. Hermans, Peter W. M. Bootsma, Hester J. |
author_sort | de Vries, Stefan P. W. |
collection | PubMed |
description | Moraxella catarrhalis is a mucosal pathogen that causes childhood otitis media and exacerbations of chronic obstructive pulmonary disease in adults. During the course of infection, M. catarrhalis needs to adhere to epithelial cells of different host niches such as the nasopharynx and lungs, and consequently, efficient adhesion to epithelial cells is considered an important virulence trait of M. catarrhalis. By using Tn-seq, a genome-wide negative selection screenings technology, we identified 15 genes potentially required for adherence of M. catarrhalis BBH18 to pharyngeal epithelial Detroit 562 and lung epithelial A549 cells. Validation with directed deletion mutants confirmed the importance of aroA (3-phosphoshikimate 1-carboxyvinyl-transferase), ecnAB (entericidin EcnAB), lgt1 (glucosyltransferase), and MCR_1483 (outer membrane lipoprotein) for cellular adherence, with ΔMCR_1483 being most severely attenuated in adherence to both cell lines. Expression profiling of M. catarrhalis BBH18 during adherence to Detroit 562 cells showed increased expression of 34 genes in cell-attached versus planktonic bacteria, among which ABC transporters for molybdate and sulfate, while reduced expression of 16 genes was observed. Notably, neither the newly identified genes affecting adhesion nor known adhesion genes were differentially expressed during adhesion, but appeared to be constitutively expressed at a high level. Profiling of the transcriptional response of Detroit 562 cells upon adherence of M. catarrhalis BBH18 showed induction of a panel of pro-inflammatory genes as well as genes involved in the prevention of damage of the epithelial barrier. In conclusion, this study provides new insight into the molecular interplay between M. catarrhalis and host epithelial cells during the process of adherence. |
format | Online Article Text |
id | pubmed-3735583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37355832013-08-09 Characterization of the Molecular Interplay between Moraxella catarrhalis and Human Respiratory Tract Epithelial Cells de Vries, Stefan P. W. Eleveld, Marc J. Hermans, Peter W. M. Bootsma, Hester J. PLoS One Research Article Moraxella catarrhalis is a mucosal pathogen that causes childhood otitis media and exacerbations of chronic obstructive pulmonary disease in adults. During the course of infection, M. catarrhalis needs to adhere to epithelial cells of different host niches such as the nasopharynx and lungs, and consequently, efficient adhesion to epithelial cells is considered an important virulence trait of M. catarrhalis. By using Tn-seq, a genome-wide negative selection screenings technology, we identified 15 genes potentially required for adherence of M. catarrhalis BBH18 to pharyngeal epithelial Detroit 562 and lung epithelial A549 cells. Validation with directed deletion mutants confirmed the importance of aroA (3-phosphoshikimate 1-carboxyvinyl-transferase), ecnAB (entericidin EcnAB), lgt1 (glucosyltransferase), and MCR_1483 (outer membrane lipoprotein) for cellular adherence, with ΔMCR_1483 being most severely attenuated in adherence to both cell lines. Expression profiling of M. catarrhalis BBH18 during adherence to Detroit 562 cells showed increased expression of 34 genes in cell-attached versus planktonic bacteria, among which ABC transporters for molybdate and sulfate, while reduced expression of 16 genes was observed. Notably, neither the newly identified genes affecting adhesion nor known adhesion genes were differentially expressed during adhesion, but appeared to be constitutively expressed at a high level. Profiling of the transcriptional response of Detroit 562 cells upon adherence of M. catarrhalis BBH18 showed induction of a panel of pro-inflammatory genes as well as genes involved in the prevention of damage of the epithelial barrier. In conclusion, this study provides new insight into the molecular interplay between M. catarrhalis and host epithelial cells during the process of adherence. Public Library of Science 2013-08-06 /pmc/articles/PMC3735583/ /pubmed/23936538 http://dx.doi.org/10.1371/journal.pone.0072193 Text en © 2013 Vries et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article de Vries, Stefan P. W. Eleveld, Marc J. Hermans, Peter W. M. Bootsma, Hester J. Characterization of the Molecular Interplay between Moraxella catarrhalis and Human Respiratory Tract Epithelial Cells |
title | Characterization of the Molecular Interplay between Moraxella catarrhalis and Human Respiratory Tract Epithelial Cells |
title_full | Characterization of the Molecular Interplay between Moraxella catarrhalis and Human Respiratory Tract Epithelial Cells |
title_fullStr | Characterization of the Molecular Interplay between Moraxella catarrhalis and Human Respiratory Tract Epithelial Cells |
title_full_unstemmed | Characterization of the Molecular Interplay between Moraxella catarrhalis and Human Respiratory Tract Epithelial Cells |
title_short | Characterization of the Molecular Interplay between Moraxella catarrhalis and Human Respiratory Tract Epithelial Cells |
title_sort | characterization of the molecular interplay between moraxella catarrhalis and human respiratory tract epithelial cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735583/ https://www.ncbi.nlm.nih.gov/pubmed/23936538 http://dx.doi.org/10.1371/journal.pone.0072193 |
work_keys_str_mv | AT devriesstefanpw characterizationofthemolecularinterplaybetweenmoraxellacatarrhalisandhumanrespiratorytractepithelialcells AT eleveldmarcj characterizationofthemolecularinterplaybetweenmoraxellacatarrhalisandhumanrespiratorytractepithelialcells AT hermanspeterwm characterizationofthemolecularinterplaybetweenmoraxellacatarrhalisandhumanrespiratorytractepithelialcells AT bootsmahesterj characterizationofthemolecularinterplaybetweenmoraxellacatarrhalisandhumanrespiratorytractepithelialcells |