Cargando…
Node of Ranvier disruption as a cause of neurological diseases
Dysfunction and/or disruption of nodes of Ranvier are now recognized as key contributors to the pathophysiology of various neurological diseases. One reason is that the excitable nodal axolemma contains a high density of Nav (voltage-gated Na(+) channels) that are required for the rapid and efficien...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Neurochemistry
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736360/ https://www.ncbi.nlm.nih.gov/pubmed/23834220 http://dx.doi.org/10.1042/AN20130025 |
Sumario: | Dysfunction and/or disruption of nodes of Ranvier are now recognized as key contributors to the pathophysiology of various neurological diseases. One reason is that the excitable nodal axolemma contains a high density of Nav (voltage-gated Na(+) channels) that are required for the rapid and efficient saltatory conduction of action potentials. Nodal physiology is disturbed by altered function, localization, and expression of voltage-gated ion channels clustered at nodes and juxtaparanodes, and by disrupted axon–glial interactions at paranodes. This paper reviews recent discoveries in molecular/cellular neuroscience, genetics, immunology, and neurology that highlight the critical roles of nodes of Ranvier in health and disease. |
---|