Cargando…

The non-negative matrix factorization toolbox for biological data mining

BACKGROUND: Non-negative matrix factorization (NMF) has been introduced as an important method for mining biological data. Though there currently exists packages implemented in R and other programming languages, they either provide only a few optimization algorithms or focus on a specific applicatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yifeng, Ngom, Alioune
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736608/
https://www.ncbi.nlm.nih.gov/pubmed/23591137
http://dx.doi.org/10.1186/1751-0473-8-10
Descripción
Sumario:BACKGROUND: Non-negative matrix factorization (NMF) has been introduced as an important method for mining biological data. Though there currently exists packages implemented in R and other programming languages, they either provide only a few optimization algorithms or focus on a specific application field. There does not exist a complete NMF package for the bioinformatics community, and in order to perform various data mining tasks on biological data. RESULTS: We provide a convenient MATLAB toolbox containing both the implementations of various NMF techniques and a variety of NMF-based data mining approaches for analyzing biological data. Data mining approaches implemented within the toolbox include data clustering and bi-clustering, feature extraction and selection, sample classification, missing values imputation, data visualization, and statistical comparison. CONCLUSIONS: A series of analysis such as molecular pattern discovery, biological process identification, dimension reduction, disease prediction, visualization, and statistical comparison can be performed using this toolbox.