Cargando…

Antibacterial activities of the methanol extracts of seven Cameroonian dietary plants against bacteria expressing MDR phenotypes

The morbidity and mortality caused by bacterial infections significantly increased with resistance to commonly used antibiotics. This is partially due to the activation of efflux pumps in Gram-negative bacteria. The present work designed to assess the in vitro antibacterial activities of seven Camer...

Descripción completa

Detalles Bibliográficos
Autores principales: Seukep, Jackson A, Fankam, Aimé G, Djeussi, Doriane E, Voukeng, Igor K, Tankeo, Simplice B, Noumdem, Jaurès AK, Kuete, Antoine HLN, Kuete, Victor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738912/
https://www.ncbi.nlm.nih.gov/pubmed/23961425
http://dx.doi.org/10.1186/2193-1801-2-363
Descripción
Sumario:The morbidity and mortality caused by bacterial infections significantly increased with resistance to commonly used antibiotics. This is partially due to the activation of efflux pumps in Gram-negative bacteria. The present work designed to assess the in vitro antibacterial activities of seven Cameroonian dietary plants (Sesamum indicum, Sesamum radiatum, Cinnamomum zeylanicum, Corchous olitorius, Cyperus esculentus, Adansonia digitata, Aframomum kayserianum), against multidrug resistant (MDR) Gram-negative bacteria over expressing active efflux pumps. The standard phytochemical methods were used to detect the main classes of secondary metabolites in the extracts. The antibacterial activities of the studied extracts in the absence or presence of an efflux pump inhibitor (PAβN) were evaluated using liquid microbroth dilution method. The results obtained indicated that apart from the extract of C. esculentus, all other samples contained alkaloids, phenols and polyphenols meanwhile other classes of chemicals were selectively present. The studied extracts displayed antibacterial activities with minimal inhibitory concentrations (MICs) values ranged from 64 to 1024 μg/mL on the majority of the 27 tested microbial strains. The extract of S. indicum was active against 77.77% of the tested microorganisms whilst the lowest MIC value (64 μg/mL) was recorded with that of A. kayserianum against E. aerogenes EA294. The results of the present work provide baseline information on the possible used of the tested Cameroonian dietary plants in the treatment of bacterial infections including multi-drug resistant phenotypes.