Cargando…

Submerged Liquid Plasma for the Synthesis of Unconventional Nitrogen Polymers

Glow discharge polymerization is not well understood due to the rapid/complex reaction at the plasma/gas precursor interface. Plasma reaction in a submerged condition allows post-plasma-polymerization, leading to further polymer growth and thus a stable structure. Electron collision with acetonitril...

Descripción completa

Detalles Bibliográficos
Autores principales: Senthilnathan, Jaganathan, Weng, Chih-Chiang, Liao, Jiunn-Der, Yoshimura, Masahiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740282/
https://www.ncbi.nlm.nih.gov/pubmed/23933661
http://dx.doi.org/10.1038/srep02414
Descripción
Sumario:Glow discharge polymerization is not well understood due to the rapid/complex reaction at the plasma/gas precursor interface. Plasma reaction in a submerged condition allows post-plasma-polymerization, leading to further polymer growth and thus a stable structure. Electron collision with acetonitrile at the interface initiates the formation of radical monomers, which undergoes further rearrangement to form low-molecular (LM) nitrogen polymers (NPs). The radical-rich LM NPs go through further polymerization, forming stable high-molecular (HM) NPs (as determined using liquid chromatography/mass spectrometry). LM NPs absorb light at a wavelength of 270 nm (λ max) whereas HM NPs show absorption at 420 nm (λ max), as determined from ultraviolet-visible absorption spectra. The fluorescence spectra of HM NPs show characteristic emission at 430 nm, which indicates the presence of nitrogen functional groups with external conjugation. The proposed structure of HM NPs is verified with different analytical instruments.