Cargando…
Data-based filtering for replicated high-throughput transcriptome sequencing experiments
Motivation: RNA sequencing is now widely performed to study differential expression among experimental conditions. As tests are performed on a large number of genes, stringent false-discovery rate control is required at the expense of detection power. Ad hoc filtering techniques are regularly used t...
Autores principales: | Rau, Andrea, Gallopin, Mélina, Celeux, Gilles, Jaffrézic, Florence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740625/ https://www.ncbi.nlm.nih.gov/pubmed/23821648 http://dx.doi.org/10.1093/bioinformatics/btt350 |
Ejemplares similares
-
A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data
por: Gallopin, Mélina, et al.
Publicado: (2013) -
JUMP: replicability analysis of high-throughput experiments with applications to spatial transcriptomic studies
por: Lyu, Pengfei, et al.
Publicado: (2023) -
Identification of marginal causal relationships in gene networks from observational and interventional expression data
por: Monneret, Gilles, et al.
Publicado: (2017) -
Differential meta-analysis of RNA-seq data from multiple studies
por: Rau, Andrea, et al.
Publicado: (2014) -
Joint estimation of causal effects from observational and intervention gene expression data
por: Rau, Andrea, et al.
Publicado: (2013)