Cargando…
Improved Sparse Multi-Class SVM and Its Application for Gene Selection in Cancer Classification
BACKGROUND: Microarray techniques provide promising tools for cancer diagnosis using gene expression profiles. However, molecular diagnosis based on high-throughput platforms presents great challenges due to the overwhelming number of variables versus the small sample size and the complex nature of...
Autores principales: | Huang, Lingkang, Zhang, Hao Helen, Zeng, Zhao-Bang, Bushel, Pierre R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740816/ https://www.ncbi.nlm.nih.gov/pubmed/23966761 http://dx.doi.org/10.4137/CIN.S10212 |
Ejemplares similares
-
Sparse feature learning for multi-class Parkinson’s disease classification
por: Lei, Haijun, et al.
Publicado: (2018) -
Genes related to apoptosis predict necrosis of the liver as a phenotype observed in rats exposed to a compendium of hepatotoxicants
por: Huang, Lingkang, et al.
Publicado: (2008) -
Multiclass Classification of Cardiac Arrhythmia Using Improved Feature Selection and SVM Invariants
por: Mustaqeem, Anam, et al.
Publicado: (2018) -
Employing One-Class SVM Classifier Ensemble for Imbalanced Data Stream Classification
por: Klikowski, Jakub, et al.
Publicado: (2020) -
Sensor Drift Compensation Based on the Improved LSTM and SVM Multi-Class Ensemble Learning Models
por: Zhao, Xia, et al.
Publicado: (2019)