Cargando…
Sirt1 Inhibits Akt2-Mediated Porcine Adipogenesis Potentially by Direct Protein-Protein Interaction
Compared with the rodent, the domestic pig is a much better animal model for studying adipogenesis and obesity-related diseases. Currently, the role of Akt2 and Sirt1 in porcine adipogenesis remains elusive. In this study, we defined the effect of Akt2 and Sirt1 on porcine preadipocyte lipogenesis a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741135/ https://www.ncbi.nlm.nih.gov/pubmed/23951196 http://dx.doi.org/10.1371/journal.pone.0071576 |
Sumario: | Compared with the rodent, the domestic pig is a much better animal model for studying adipogenesis and obesity-related diseases. Currently, the role of Akt2 and Sirt1 in porcine adipogenesis remains elusive. In this study, we defined the effect of Akt2 and Sirt1 on porcine preadipocyte lipogenesis and the regulatory mechanism. First, we found that Akt2 was widely expressed in porcine various tissues and at high level in adipose tissue. Further analysis showed that the expression level of Akt2 was much higher in adipose tissue and adipocytes of the Bamei pig breed (a Chinese indigenous fatty pig) than in that of the Large White pig breed (a Lean type pig), whereas the level of Sirt1 expression was opposite. The expression levels of Sirt1 and Akt2 gradually increased during adipogenic differentiation. Adipogenesis was robustly inhibited in Akt2 deficient fat cells, whereas it was promoted in Sirt1 deficient cells using the lentiviral–mediated shRNA approach. Interestingly, adipogenesis returned to normal in Akt2 and Sirt1 dual–deficient cells, showing that the pro- and anti–adipogenic effects were balanced. Sirt1 inhibited transcriptional activity of Akt2 in a dose-dependent way. Interaction of endogenous Akt2 and Sirt1 was gradually enhanced before day 6 of differentiation, and then attenuated. Akt2 and Sirt1 also interacted with C/EBPα in adipocytes. Moreover, knockdown of Akt2 or/and Sirt1 affected pro–lipogenesis of insulin–stimulated by PI3K/Akt pathway. We further found that Sirt1 respectively interacted with PI3K and GSK3β which were key upstream and downstream components of PI3K/Akt pathway. Based on the above findings, we concluded that the crosstalk between C/EBPα and PI3K/Akt signaling pathways is implicated in Akt2 and Sirt1 regulation of adipogenesis. |
---|