Cargando…

Impact Loading and Locomotor-Respiratory Coordination Significantly Influence Breathing Dynamics in Running Humans

Locomotor-respiratory coupling (LRC), phase-locking between breathing and stepping rhythms, occurs in many vertebrates. When quadrupedal mammals gallop, 1∶1 stride per breath coupling is necessitated by pronounced mechanical interactions between locomotion and ventilation. Humans show more flexibili...

Descripción completa

Detalles Bibliográficos
Autores principales: Daley, Monica A., Bramble, Dennis M., Carrier, David R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741319/
https://www.ncbi.nlm.nih.gov/pubmed/23950997
http://dx.doi.org/10.1371/journal.pone.0070752
_version_ 1782280236044386304
author Daley, Monica A.
Bramble, Dennis M.
Carrier, David R.
author_facet Daley, Monica A.
Bramble, Dennis M.
Carrier, David R.
author_sort Daley, Monica A.
collection PubMed
description Locomotor-respiratory coupling (LRC), phase-locking between breathing and stepping rhythms, occurs in many vertebrates. When quadrupedal mammals gallop, 1∶1 stride per breath coupling is necessitated by pronounced mechanical interactions between locomotion and ventilation. Humans show more flexibility in breathing patterns during locomotion, using LRC ratios of 2∶1, 2.5∶1, 3∶1, or 4∶1 and sometimes no coupling. Previous studies provide conflicting evidence on the mechanical significance of LRC in running humans. Some studies suggest LRC improves breathing efficiency, but others suggest LRC is mechanically insignificant because ‘step-driven flows’ (ventilatory flows attributable to step-induced forces) contribute a negligible fraction of tidal volume. Yet, although step-driven flows are brief, they cause large fluctuations in ventilatory flow. Here we test the hypothesis that running humans use LRC to minimize antagonistic effects of step-driven flows on breathing. We measured locomotor-ventilatory dynamics in 14 subjects running at a self-selected speed (2.6±0.1 ms(−1)) and compared breathing dynamics in their naturally ‘preferred’ and ‘avoided’ entrainment patterns. Step-driven flows occurred at 1-2X step frequency with peak magnitudes of 0.97±0.45 Ls(−1) (mean ±S.D). Step-driven flows varied depending on ventilatory state (high versus low lung volume), suggesting state-dependent changes in compliance and damping of thoraco-abdominal tissues. Subjects naturally preferred LRC patterns that minimized antagonistic interactions and aligned ventilatory transitions with assistive phases of the step. Ventilatory transitions initiated in ‘preferred’ phases within the step cycle occurred 2x faster than those in ‘avoided’ phases. We hypothesize that humans coordinate breathing and locomotion to minimize antagonistic loading of respiratory muscles, reduce work of breathing and minimize rate of fatigue. Future work could address the potential consequences of locomotor-ventilatory interactions for elite endurance athletes and individuals who are overweight or obese, populations in which respiratory muscle fatigue can be limiting.
format Online
Article
Text
id pubmed-3741319
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37413192013-08-15 Impact Loading and Locomotor-Respiratory Coordination Significantly Influence Breathing Dynamics in Running Humans Daley, Monica A. Bramble, Dennis M. Carrier, David R. PLoS One Research Article Locomotor-respiratory coupling (LRC), phase-locking between breathing and stepping rhythms, occurs in many vertebrates. When quadrupedal mammals gallop, 1∶1 stride per breath coupling is necessitated by pronounced mechanical interactions between locomotion and ventilation. Humans show more flexibility in breathing patterns during locomotion, using LRC ratios of 2∶1, 2.5∶1, 3∶1, or 4∶1 and sometimes no coupling. Previous studies provide conflicting evidence on the mechanical significance of LRC in running humans. Some studies suggest LRC improves breathing efficiency, but others suggest LRC is mechanically insignificant because ‘step-driven flows’ (ventilatory flows attributable to step-induced forces) contribute a negligible fraction of tidal volume. Yet, although step-driven flows are brief, they cause large fluctuations in ventilatory flow. Here we test the hypothesis that running humans use LRC to minimize antagonistic effects of step-driven flows on breathing. We measured locomotor-ventilatory dynamics in 14 subjects running at a self-selected speed (2.6±0.1 ms(−1)) and compared breathing dynamics in their naturally ‘preferred’ and ‘avoided’ entrainment patterns. Step-driven flows occurred at 1-2X step frequency with peak magnitudes of 0.97±0.45 Ls(−1) (mean ±S.D). Step-driven flows varied depending on ventilatory state (high versus low lung volume), suggesting state-dependent changes in compliance and damping of thoraco-abdominal tissues. Subjects naturally preferred LRC patterns that minimized antagonistic interactions and aligned ventilatory transitions with assistive phases of the step. Ventilatory transitions initiated in ‘preferred’ phases within the step cycle occurred 2x faster than those in ‘avoided’ phases. We hypothesize that humans coordinate breathing and locomotion to minimize antagonistic loading of respiratory muscles, reduce work of breathing and minimize rate of fatigue. Future work could address the potential consequences of locomotor-ventilatory interactions for elite endurance athletes and individuals who are overweight or obese, populations in which respiratory muscle fatigue can be limiting. Public Library of Science 2013-08-12 /pmc/articles/PMC3741319/ /pubmed/23950997 http://dx.doi.org/10.1371/journal.pone.0070752 Text en © 2013 Daley et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Daley, Monica A.
Bramble, Dennis M.
Carrier, David R.
Impact Loading and Locomotor-Respiratory Coordination Significantly Influence Breathing Dynamics in Running Humans
title Impact Loading and Locomotor-Respiratory Coordination Significantly Influence Breathing Dynamics in Running Humans
title_full Impact Loading and Locomotor-Respiratory Coordination Significantly Influence Breathing Dynamics in Running Humans
title_fullStr Impact Loading and Locomotor-Respiratory Coordination Significantly Influence Breathing Dynamics in Running Humans
title_full_unstemmed Impact Loading and Locomotor-Respiratory Coordination Significantly Influence Breathing Dynamics in Running Humans
title_short Impact Loading and Locomotor-Respiratory Coordination Significantly Influence Breathing Dynamics in Running Humans
title_sort impact loading and locomotor-respiratory coordination significantly influence breathing dynamics in running humans
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741319/
https://www.ncbi.nlm.nih.gov/pubmed/23950997
http://dx.doi.org/10.1371/journal.pone.0070752
work_keys_str_mv AT daleymonicaa impactloadingandlocomotorrespiratorycoordinationsignificantlyinfluencebreathingdynamicsinrunninghumans
AT brambledennism impactloadingandlocomotorrespiratorycoordinationsignificantlyinfluencebreathingdynamicsinrunninghumans
AT carrierdavidr impactloadingandlocomotorrespiratorycoordinationsignificantlyinfluencebreathingdynamicsinrunninghumans