Cargando…

Small-world networks of spontaneous Ca(2+) activity

Synchronized network activity among groups of interconnected cells is essential for diverse functions in the brain. However, most studies have been made on cellular networks in the mature brain when chemical synapses have been formed. Much less is known about the situation earlier in development. Wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Malmersjö, Seth, Rebellato, Paola, Smedler, Erik, Uhlén, Per
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742060/
https://www.ncbi.nlm.nih.gov/pubmed/23986813
http://dx.doi.org/10.4161/cib.24788
Descripción
Sumario:Synchronized network activity among groups of interconnected cells is essential for diverse functions in the brain. However, most studies have been made on cellular networks in the mature brain when chemical synapses have been formed. Much less is known about the situation earlier in development. When studying neural progenitors derived from embryonic stem cells and neural progenitors from mice embryos, we found networks of gap junction coupled cells with vivid spontaneous non-random calcium (Ca(2+)) activity driven by electrical depolarization that stimulated cell growth. Network activity was revealed by single-cell live Ca(2+) imaging and further analyzed for correlations and network topology. The analysis revealed the networks to have small-world characteristics with scale-free properties. Taken together, these results demonstrate that immature cells in the developing brain organize in small-world networks that critically regulate neural progenitor proliferation.