Cargando…

Physicochemical characterization of a novel graphene-based magnetic resonance imaging contrast agent

We report the synthesis and characterization of a novel carbon nanostructure-based magnetic resonance imaging contrast agent (MRI CA); graphene nanoplatelets intercalated with manganese (Mn(2+)) ions, functionalized with dextran (GNP-Dex); and the in vitro assessment of its essential preclinical phy...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanakia, Shruti, Toussaint, Jimmy D, Chowdhury, Sayan Mullick, Lalwani, Gaurav, Tembulkar, Tanuf, Button, Terry, Shroyer, Kenneth R, Moore, William, Sitharaman, Balaji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742530/
https://www.ncbi.nlm.nih.gov/pubmed/23946653
http://dx.doi.org/10.2147/IJN.S47062
Descripción
Sumario:We report the synthesis and characterization of a novel carbon nanostructure-based magnetic resonance imaging contrast agent (MRI CA); graphene nanoplatelets intercalated with manganese (Mn(2+)) ions, functionalized with dextran (GNP-Dex); and the in vitro assessment of its essential preclinical physicochemical properties: osmolality, viscosity, partition coefficient, protein binding, thermostability, histamine release, and relaxivity. The results indicate that, at concentrations between 0.1 and 100.0 mg/mL, the GNP-Dex formulations are hydrophilic, highly soluble, and stable in deionized water, as well as iso-osmolar (upon addition of mannitol) and iso-viscous to blood. At potential steady-state equilibrium concentrations in blood (0.1–10.0 mg/mL), the thermostability, protein-binding, and histamine-release studies indicate that the GNP-Dex formulations are thermally stable (with no Mn(2+) ion dissociation), do not allow non-specific protein adsorption, and elicit negligible allergic response. The r(1) relaxivity of GNP-Dex was 92 mM(−1)s(−1) (per-Mn(2+) ion, 22 MHz proton Larmor frequency); ~20- to 30-fold greater than that of clinical gadolinium (Gd(3+))- and Mn(2+)-based MRI CAs. The results open avenues for preclinical in vivo safety and efficacy studies with GNP-Dex toward its development as a clinical MRI CA.