Cargando…

DNA methylation state of the galectin-3 gene represents a potential new marker of thyroid malignancy

In order to supplement the cytopathological assessment of thyroid tumors, there is a need for new markers to correctly diagnose malignant thyroid lesions and avoid unnecessary and potentially harmful therapies for patients. The immunohistochemical expression of galectin-3 is currently considered to...

Descripción completa

Detalles Bibliográficos
Autores principales: KELLER, SIMONA, ANGRISANO, TIZIANA, FLORIO, ERMANNO, PERO, RAFFAELA, DECAUSSIN-PETRUCCI, MIRIAM, TRONCONE, GIANCARLO, CAPASSO, MARIO, LEMBO, FRANCESCA, FUSCO, ALFREDO, CHIARIOTTI, LORENZO
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742793/
https://www.ncbi.nlm.nih.gov/pubmed/23946782
http://dx.doi.org/10.3892/ol.2013.1312
Descripción
Sumario:In order to supplement the cytopathological assessment of thyroid tumors, there is a need for new markers to correctly diagnose malignant thyroid lesions and avoid unnecessary and potentially harmful therapies for patients. The immunohistochemical expression of galectin-3 is currently considered to be the most accurate stand-alone marker for thyroid cancer diagnosis. The aim of this study was to establish whether the methylation state of the galectin-3 gene is a candidate molecular marker for thyroid malignancy. Thyroid specimens from 50 patients were analyzed, including 5 normal thyroid, 3 goiters, 39 papillary and 3 anaplastic thyroid carcinoma cases. High-resolution methylation analyses was performed to investigate the methylation state of a large genomic region (from −89 to +408) encompassing the galectin-3 transcriptional start site. Within this region, 5 CpG sites (nucleotide positions +134, +137, +142, +147 and +156) were observed to be differentially methylated among the samples and were further analyzed by the quantitative pyrosequencing technique. The hypomethylation of the +134, +137, +142, +147 and +156 CpG sites was observed to be markedly associated with cancer. Although the methylation degree of each single site was highly variable in non-neoplastic tissues, the average methylation state of the 5 CpG sites clearly distinguished cancer from the nonneoplastic thyroid tissues.