Cargando…

Characterization of VIP1 activity as a transcriptional regulator in vitro and in planta

VIP1 (VirE2 interacting protein 1), initially discovered as a host protein involved in Agrobacterium-plant cell DNA transfer, is a transcription factor of the basic leucine-zipper (bZIP) domain family that regulates several defence-related genes in Arabidopsis. We have developed assays to assess VIP...

Descripción completa

Detalles Bibliográficos
Autores principales: Lacroix, Benoît, Citovsky, Vitaly
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743055/
https://www.ncbi.nlm.nih.gov/pubmed/23942522
http://dx.doi.org/10.1038/srep02440
Descripción
Sumario:VIP1 (VirE2 interacting protein 1), initially discovered as a host protein involved in Agrobacterium-plant cell DNA transfer, is a transcription factor of the basic leucine-zipper (bZIP) domain family that regulates several defence-related genes in Arabidopsis. We have developed assays to assess VIP1 binding to its DNA target in vitro and transcriptional activation efficiency in planta. Several point mutations in the VIP1 response element VRE affected the VIP1 activity, and a strong correlation between VIP1-VRE binding and transcriptional activation levels was observed. Promoter activation by VIP1 was influenced by bacterial and plant proteins known to interact with VIP1 during Agrobacterium infection, i.e., VirE2, VirF and VIP2. VirF, an F-box protein, strongly decreased VIP1 transcriptional activation ability, but not its binding to VRE in vitro, most likely by triggering proteasomal degradation of VIP1. Finally, activation of a VRE-containing promoter was observed in dividing cells, probably resulting from activation of endogenous VIP1.