Cargando…
Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly
Epiboly is the first coordinated cell movement in most vertebrates and marks the onset of gastrulation. During zebrafish epiboly, enveloping layer (EVL) and deep cells spread over the vegetal yolk mass with a concomitant thinning of the deep cell layer. A prevailing model suggests that deep cell rad...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744077/ https://www.ncbi.nlm.nih.gov/pubmed/23951411 http://dx.doi.org/10.1242/bio.20134614 |
_version_ | 1782280553738797056 |
---|---|
author | Bensch, Robert Song, Sungmin Ronneberger, Olaf Driever, Wolfgang |
author_facet | Bensch, Robert Song, Sungmin Ronneberger, Olaf Driever, Wolfgang |
author_sort | Bensch, Robert |
collection | PubMed |
description | Epiboly is the first coordinated cell movement in most vertebrates and marks the onset of gastrulation. During zebrafish epiboly, enveloping layer (EVL) and deep cells spread over the vegetal yolk mass with a concomitant thinning of the deep cell layer. A prevailing model suggests that deep cell radial intercalations directed towards the EVL would drive deep cell epiboly. To test this model, we have globally recorded 3D cell trajectories for zebrafish blastomeres between sphere and 50% epiboly stages, and developed an image analysis framework to determine intercalation events, intercalation directionality, and migration speed for cells at specific positions within the embryo. This framework uses Voronoi diagrams to compute cell-to-cell contact areas, defines a feature-based spatio-temporal model for intercalation events and fits an anatomical coordinate system to the recorded datasets. We further investigate whether epiboly defects in MZspg mutant embryos devoid of Pou5f1/Oct4 may be caused by changes in intercalation behavior. In wild-type and mutant embryos, intercalations orthogonal to the EVL occur with no directional bias towards or away from the EVL, suggesting that there are no directional cues that would direct intercalations towards the EVL. Further, we find that intercalation direction is independent of the previous intercalation history of individual deep cells, arguing against cues that would program specific intrinsic directed migration behaviors. Our data support a dynamic model in which deep cells during epiboly migrate into space opening between the EVL and the yolk syncytial layer. Genetic programs determining cell motility may control deep cell dynamic behavior and epiboly progress. |
format | Online Article Text |
id | pubmed-3744077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | The Company of Biologists |
record_format | MEDLINE/PubMed |
spelling | pubmed-37440772013-08-15 Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly Bensch, Robert Song, Sungmin Ronneberger, Olaf Driever, Wolfgang Biol Open Research Article Epiboly is the first coordinated cell movement in most vertebrates and marks the onset of gastrulation. During zebrafish epiboly, enveloping layer (EVL) and deep cells spread over the vegetal yolk mass with a concomitant thinning of the deep cell layer. A prevailing model suggests that deep cell radial intercalations directed towards the EVL would drive deep cell epiboly. To test this model, we have globally recorded 3D cell trajectories for zebrafish blastomeres between sphere and 50% epiboly stages, and developed an image analysis framework to determine intercalation events, intercalation directionality, and migration speed for cells at specific positions within the embryo. This framework uses Voronoi diagrams to compute cell-to-cell contact areas, defines a feature-based spatio-temporal model for intercalation events and fits an anatomical coordinate system to the recorded datasets. We further investigate whether epiboly defects in MZspg mutant embryos devoid of Pou5f1/Oct4 may be caused by changes in intercalation behavior. In wild-type and mutant embryos, intercalations orthogonal to the EVL occur with no directional bias towards or away from the EVL, suggesting that there are no directional cues that would direct intercalations towards the EVL. Further, we find that intercalation direction is independent of the previous intercalation history of individual deep cells, arguing against cues that would program specific intrinsic directed migration behaviors. Our data support a dynamic model in which deep cells during epiboly migrate into space opening between the EVL and the yolk syncytial layer. Genetic programs determining cell motility may control deep cell dynamic behavior and epiboly progress. The Company of Biologists 2013-06-03 /pmc/articles/PMC3744077/ /pubmed/23951411 http://dx.doi.org/10.1242/bio.20134614 Text en © 2013. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Bensch, Robert Song, Sungmin Ronneberger, Olaf Driever, Wolfgang Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly |
title | Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly |
title_full | Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly |
title_fullStr | Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly |
title_full_unstemmed | Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly |
title_short | Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly |
title_sort | non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744077/ https://www.ncbi.nlm.nih.gov/pubmed/23951411 http://dx.doi.org/10.1242/bio.20134614 |
work_keys_str_mv | AT benschrobert nondirectionalradialintercalationdominatesdeepcellbehaviorduringzebrafishepiboly AT songsungmin nondirectionalradialintercalationdominatesdeepcellbehaviorduringzebrafishepiboly AT ronnebergerolaf nondirectionalradialintercalationdominatesdeepcellbehaviorduringzebrafishepiboly AT drieverwolfgang nondirectionalradialintercalationdominatesdeepcellbehaviorduringzebrafishepiboly |