Cargando…
Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore
The paradigm shift in dye sensitized solar cells (DSCs) – towards donor- π bridge-acceptor (D-π-A) dyes – increases the performances of DSCs and challenges established design principles. Framed by this shifting landscape, a series of four diketopyrrolopyrrole (DPP)-based sensitizers utilizing the do...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744082/ https://www.ncbi.nlm.nih.gov/pubmed/23945746 http://dx.doi.org/10.1038/srep02446 |
Sumario: | The paradigm shift in dye sensitized solar cells (DSCs) – towards donor- π bridge-acceptor (D-π-A) dyes – increases the performances of DSCs and challenges established design principles. Framed by this shifting landscape, a series of four diketopyrrolopyrrole (DPP)-based sensitizers utilizing the donor-chromophore-anchor (D-C-A) motif were investigated computationally, spectroscopically, and fabricated by systematic evaluation of finished photovoltaic cells. In all cases, the [Co(bpy)(3)](3+/2+) redox-shuttle afforded superior performance compared to I(3)(−)/I(−). Aesthetically, careful molecular engineering of the DPP chromophore yielded the first example of a high-performance blue DSC – a challenge unmet since the inception of this photovoltaic technology: DPP17 yields over 10% power conversion efficiency (PCE) with the [Co(bpy)(3)](3+/2+) electrolyte at full AM 1.5 G simulated sun light. |
---|