Cargando…

Photon Parameterisation for Robust Relaxation Constraints

This paper presents a novel approach to detecting and preserving fine illumination structure within photon maps. Data derived from each photon's primal trajectory is encoded and used to build a high-dimensional kd-tree. Incorporation of these new parameters allows for precise differentiation be...

Descripción completa

Detalles Bibliográficos
Autores principales: Spencer, B, Jones, M W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744758/
https://www.ncbi.nlm.nih.gov/pubmed/23956479
http://dx.doi.org/10.1111/cgf.12028
Descripción
Sumario:This paper presents a novel approach to detecting and preserving fine illumination structure within photon maps. Data derived from each photon's primal trajectory is encoded and used to build a high-dimensional kd-tree. Incorporation of these new parameters allows for precise differentiation between intersecting ray envelopes, thus minimizing detail degradation when combined with photon relaxation. We demonstrate how parameter-aware querying is beneficial in both detecting and removing noise. We also propose a more robust structure descriptor based on principal components analysis that better identifies anisotropic detail at the sub-kernel level. We illustrate the effectiveness of our approach in several example scenes and show significant improvements when rendering complex caustics compared to previous methods.