Cargando…

New Blocking Antibodies Impede Adhesion, Migration and Survival of Ovarian Cancer Cells, Highlighting MFGE8 as a Potential Therapeutic Target of Human Ovarian Carcinoma

Milk Fat Globule – EGF – factor VIII (MFGE8), also called lactadherin, is a secreted protein, which binds extracellularly to phosphatidylserine and to αvβ3 and αvβ5 integrins. On human and mouse cells expressing these integrins, such as endothelial cells, phagocytes and some tumors, MFGE8/lactadheri...

Descripción completa

Detalles Bibliográficos
Autores principales: Tibaldi, Lorenzo, Leyman, Shirley, Nicolas, André, Notebaert, Sofie, Dewulf, Melissa, Ngo, Thu Hoa, Zuany-Amorim, Claudia, Amzallag, Nathalie, Bernard-Pierrot, Isabelle, Sastre-Garau, Xavier, Théry, Clotilde
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745384/
https://www.ncbi.nlm.nih.gov/pubmed/23977342
http://dx.doi.org/10.1371/journal.pone.0072708
Descripción
Sumario:Milk Fat Globule – EGF – factor VIII (MFGE8), also called lactadherin, is a secreted protein, which binds extracellularly to phosphatidylserine and to αvβ3 and αvβ5 integrins. On human and mouse cells expressing these integrins, such as endothelial cells, phagocytes and some tumors, MFGE8/lactadherin has been shown to promote survival, epithelial to mesenchymal transition and phagocytosis. A protumoral function of MFGE8 has consequently been documented for a few types of human cancers, including melanoma, a subtype of breast cancers, and bladder carcinoma. Inhibiting the functions of MFGE8 could thus represent a new type of therapy for human cancers. Here, we show by immunohistochemistry on a collection of human ovarian cancers that MFGE8 is overexpressed in 45% of these tumors, and we confirm that it is specifically overexpressed in the triple-negative subtype of human breast cancers. We have established new in vitro assays to measure the effect of MFGE8 on survival, adhesion and migration of human ovarian and triple-negative breast cancer cell lines. Using these assays, we could identify new MFGE8-specific monoclonal antibodies, which efficiently blocked these three tumor-promoting effects of MFGE8. Our results suggest future use of MFGE8-blocking antibodies as new anti-cancer therapeutics in subgroups of ovarian carcinoma, and triple-negative breast carcinoma patients.