Cargando…
Hyperglycemia Induces Altered Expressions of Angiogenesis Associated Molecules in the Trophoblast
We previously reported that the increased level of perlecan with altered glycosaminoglycan (GAG) substitution was present in the placenta with gestational diabetes mellitus (GDM) and in the trophoblasts cultured under hyperglycemic condition. Trophoblast is the first cell lineage to differentiate, i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745874/ https://www.ncbi.nlm.nih.gov/pubmed/23983782 http://dx.doi.org/10.1155/2013/457971 |
Sumario: | We previously reported that the increased level of perlecan with altered glycosaminoglycan (GAG) substitution was present in the placenta with gestational diabetes mellitus (GDM) and in the trophoblasts cultured under hyperglycemic condition. Trophoblast is the first cell lineage to differentiate, invasive, and migrate into the vessel tissues of placenta and fetal membrane during pregnancy. Therefore, active matrix remodeling and vessel formation must occur during placentation. In this study, we further investigated whether hyperglycemia-induced alterations of perlecan in the extracellular matrix (ECM) affect the proliferation and the expressions of angiogenesis-related growth factors and cytokines in the trophoblasts. 3A-Sub-E trophoblastic cells cultured in high glucose medium were conducted to mimic the hyperglycemic condition. Results showed that the hyperglycemia-induced GAG alterations in the cell surface perlecan as well as in the ECM indeed upregulated the expressions of IL-6, IL-8, and MCP-1 and the activities of MMP-2 and MMP-9 and downregulated the expressions of TIMP-2. A regulatory molecular mechanism of hyperglycemia-induced alterations of the cell surface proteoglycans and the ECM remodeling on the expressions of angiogenesis-related cytokines and growth factors in trophoblasts was proposed. This mechanism may contribute to the aberrant placental structure and the maternal and fetal complications during development. |
---|