Cargando…

Identification of Functional Regulatory Residues of the β-Lactam Inducible Penicillin Binding Protein in Methicillin-Resistant Staphylococcus aureus

Resistance to methicillin by Staphylococcus aureus is a persistent clinical problem worldwide. A mechanism for resistance has been proposed in which methicillin resistant Staphylococcus aureus (MRSA) isolates acquired a new protein called β-lactam inducible penicillin binding protein (PBP-2′). The P...

Descripción completa

Detalles Bibliográficos
Autores principales: Mbah, Andreas N., Isokpehi, Raphael D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745919/
https://www.ncbi.nlm.nih.gov/pubmed/23984067
http://dx.doi.org/10.1155/2013/614670
Descripción
Sumario:Resistance to methicillin by Staphylococcus aureus is a persistent clinical problem worldwide. A mechanism for resistance has been proposed in which methicillin resistant Staphylococcus aureus (MRSA) isolates acquired a new protein called β-lactam inducible penicillin binding protein (PBP-2′). The PBP-2′ functions by substituting other penicillin binding proteins which have been inhibited by β-lactam antibiotics. Presently, there is no structural and regulatory information on PBP-2′ protein. We conducted a complete structural and functional regulatory analysis of PBP-2′ protein. Our analysis revealed that the PBP-2′ is very stable with more hydrophilic amino acids expressing antigenic sites. PBP-2′ has three striking regulatory points constituted by first penicillin binding site at Ser25, second penicillin binding site at Ser405, and finally a single metallic ligand binding site at Glu657 which binds to Zn(2+) ions. This report highlights structural features of PBP-2′ that can serve as targets for developing new chemotherapeutic agents and conducting site direct mutagenesis experiments.