Cargando…
Identification of Functional Regulatory Residues of the β-Lactam Inducible Penicillin Binding Protein in Methicillin-Resistant Staphylococcus aureus
Resistance to methicillin by Staphylococcus aureus is a persistent clinical problem worldwide. A mechanism for resistance has been proposed in which methicillin resistant Staphylococcus aureus (MRSA) isolates acquired a new protein called β-lactam inducible penicillin binding protein (PBP-2′). The P...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745919/ https://www.ncbi.nlm.nih.gov/pubmed/23984067 http://dx.doi.org/10.1155/2013/614670 |
Sumario: | Resistance to methicillin by Staphylococcus aureus is a persistent clinical problem worldwide. A mechanism for resistance has been proposed in which methicillin resistant Staphylococcus aureus (MRSA) isolates acquired a new protein called β-lactam inducible penicillin binding protein (PBP-2′). The PBP-2′ functions by substituting other penicillin binding proteins which have been inhibited by β-lactam antibiotics. Presently, there is no structural and regulatory information on PBP-2′ protein. We conducted a complete structural and functional regulatory analysis of PBP-2′ protein. Our analysis revealed that the PBP-2′ is very stable with more hydrophilic amino acids expressing antigenic sites. PBP-2′ has three striking regulatory points constituted by first penicillin binding site at Ser25, second penicillin binding site at Ser405, and finally a single metallic ligand binding site at Glu657 which binds to Zn(2+) ions. This report highlights structural features of PBP-2′ that can serve as targets for developing new chemotherapeutic agents and conducting site direct mutagenesis experiments. |
---|