Cargando…

Four-Year Cumulative Radiation Exposure in Patients Undergoing Computed Tomography Angiography for Suspected Pulmonary Embolism

Purpose. The objective of this study was to determine the estimated effective radiation dose of pulmonary CT angiography (CTA) for suspected pulmonary embolism (PE) contributing to total medical radiation exposure over a 4-year period. Materials and Methods. This investigation retrospectively review...

Descripción completa

Detalles Bibliográficos
Autores principales: Takahashi, Edwin A., Yoon, Hyo-Chun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745975/
https://www.ncbi.nlm.nih.gov/pubmed/23984065
http://dx.doi.org/10.1155/2013/482403
Descripción
Sumario:Purpose. The objective of this study was to determine the estimated effective radiation dose of pulmonary CT angiography (CTA) for suspected pulmonary embolism (PE) contributing to total medical radiation exposure over a 4-year period. Materials and Methods. This investigation retrospectively reviewed 300 patients who presented to the emergency department and received a pulmonary CTA scan for suspected PE. We evaluated these patients' electronic medical record to determine their estimated radiation exposure to CT scans during the following four years. Using DLP to E conversion coefficients, we calculated the cumulative effective radiation dose each subject received. Results. A total of 900 CT scans were reviewed in this study. Pulmonary CTA delivered an average effective radiation dose of 10.7 ± 2.5 mSv and accounted for approximately 65% of subjects' 4-year cumulative medical radiation dose. Only 6.3% of subjects had a positive acute PE according to their radiology report. Conclusion. Pulmonary CTA accounted for the majority of subjects' medically related effective radiation dose over a 4-year period. With only a minority of subjects having positive findings for acute PE, increased efforts should be made to clinically assess pretest probability before the consideration of imaging.