Cargando…
Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change
Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the majo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746109/ https://www.ncbi.nlm.nih.gov/pubmed/23526791 http://dx.doi.org/10.1111/gcb.12203 |
_version_ | 1782280790769401856 |
---|---|
author | Davis, Jenny Pavlova, Alexandra Thompson, Ross Sunnucks, Paul |
author_facet | Davis, Jenny Pavlova, Alexandra Thompson, Ross Sunnucks, Paul |
author_sort | Davis, Jenny |
collection | PubMed |
description | Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refuges based on our review of the attributes of aquatic habitats and freshwater taxa (fishes and aquatic invertebrates) in arid Australia. We also identify methods of recognizing likely future refugia and approaches to assessing the vulnerability of arid-adapted freshwater biota to a warming and drying climate. Evolutionary refugia in arid areas are characterized as permanent, groundwater-dependent habitats (subterranean aquifers and springs) supporting vicariant relicts and short-range endemics. Ecological refuges can vary across space and time, depending on the dispersal abilities of aquatic taxa and the geographical proximity and hydrological connectivity of aquatic habitats. The most important are the perennial waterbodies (both groundwater and surface water fed) that support obligate aquatic organisms. These species will persist where suitable habitats are available and dispersal pathways are maintained. For very mobile species (invertebrates with an aerial dispersal phase) evolutionary refugia may also act as ecological refuges. Evolutionary refugia are likely future refugia because their water source (groundwater) is decoupled from local precipitation. However, their biota is extremely vulnerable to changes in local conditions because population extinction risks cannot be abated by the dispersal of individuals from other sites. Conservation planning must incorporate a high level of protection for aquifers that support refugial sites. Ecological refuges are vulnerable to changes in regional climate because they have little thermal or hydrological buffering. Accordingly, conservation planning must focus on maintaining meta-population processes, especially through dynamic connectivity between aquatic habitats at a landscape scale. |
format | Online Article Text |
id | pubmed-3746109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-37461092013-08-20 Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change Davis, Jenny Pavlova, Alexandra Thompson, Ross Sunnucks, Paul Glob Chang Biol Reviews Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refuges based on our review of the attributes of aquatic habitats and freshwater taxa (fishes and aquatic invertebrates) in arid Australia. We also identify methods of recognizing likely future refugia and approaches to assessing the vulnerability of arid-adapted freshwater biota to a warming and drying climate. Evolutionary refugia in arid areas are characterized as permanent, groundwater-dependent habitats (subterranean aquifers and springs) supporting vicariant relicts and short-range endemics. Ecological refuges can vary across space and time, depending on the dispersal abilities of aquatic taxa and the geographical proximity and hydrological connectivity of aquatic habitats. The most important are the perennial waterbodies (both groundwater and surface water fed) that support obligate aquatic organisms. These species will persist where suitable habitats are available and dispersal pathways are maintained. For very mobile species (invertebrates with an aerial dispersal phase) evolutionary refugia may also act as ecological refuges. Evolutionary refugia are likely future refugia because their water source (groundwater) is decoupled from local precipitation. However, their biota is extremely vulnerable to changes in local conditions because population extinction risks cannot be abated by the dispersal of individuals from other sites. Conservation planning must incorporate a high level of protection for aquifers that support refugial sites. Ecological refuges are vulnerable to changes in regional climate because they have little thermal or hydrological buffering. Accordingly, conservation planning must focus on maintaining meta-population processes, especially through dynamic connectivity between aquatic habitats at a landscape scale. Blackwell Publishing Ltd 2013-07 2013-04-18 /pmc/articles/PMC3746109/ /pubmed/23526791 http://dx.doi.org/10.1111/gcb.12203 Text en © 2013 Blackwell Publishing Ltd http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Reviews Davis, Jenny Pavlova, Alexandra Thompson, Ross Sunnucks, Paul Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change |
title | Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change |
title_full | Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change |
title_fullStr | Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change |
title_full_unstemmed | Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change |
title_short | Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change |
title_sort | evolutionary refugia and ecological refuges: key concepts for conserving australian arid zone freshwater biodiversity under climate change |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746109/ https://www.ncbi.nlm.nih.gov/pubmed/23526791 http://dx.doi.org/10.1111/gcb.12203 |
work_keys_str_mv | AT davisjenny evolutionaryrefugiaandecologicalrefugeskeyconceptsforconservingaustralianaridzonefreshwaterbiodiversityunderclimatechange AT pavlovaalexandra evolutionaryrefugiaandecologicalrefugeskeyconceptsforconservingaustralianaridzonefreshwaterbiodiversityunderclimatechange AT thompsonross evolutionaryrefugiaandecologicalrefugeskeyconceptsforconservingaustralianaridzonefreshwaterbiodiversityunderclimatechange AT sunnuckspaul evolutionaryrefugiaandecologicalrefugeskeyconceptsforconservingaustralianaridzonefreshwaterbiodiversityunderclimatechange |