Cargando…
FRAP Analysis Reveals Stabilization of Adhesion Structures in the Epidermis Compared to Cultured Keratinocytes
Proper development and tissue maintenance requires cell-cell adhesion structures, which serve diverse and crucial roles in tissue morphogenesis. Epithelial tissues have three main types of cell-cell junctions: tight junctions, which play a major role in barrier formation, and adherens junctions and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747223/ https://www.ncbi.nlm.nih.gov/pubmed/23977053 http://dx.doi.org/10.1371/journal.pone.0071491 |
Sumario: | Proper development and tissue maintenance requires cell-cell adhesion structures, which serve diverse and crucial roles in tissue morphogenesis. Epithelial tissues have three main types of cell-cell junctions: tight junctions, which play a major role in barrier formation, and adherens junctions and desmosomes, which provide mechanical stability and organize the underlying cytoskeleton. Our current understanding of adhesion function is hindered by a lack of tools and methods to image junctions in mammals. To better understand the dynamics of adhesion in tissues we have created a knock-in ZO-1-GFP mouse and a BAC-transgenic mouse expressing desmoplakin I-GFP. We performed fluorescence recovery after photobleaching (FRAP) experiments to quantify the turnover rates of the tight junction protein ZO-1, the adherens junction protein E-cadherin, and the desmosomal protein desmoplakin in the epidermis. Proteins at each type of junction are remarkably stable in the epidermis, in contrast to the high observed mobility of E-cadherin and ZO-1 at adherens junctions and tight junctions, respectively, in cultured cells. Our data demonstrate that there are additional mechanisms for stabilizing junctions in tissues that are not modeled by cell culture. |
---|