Cargando…

A Novel Framework for the Identification and Analysis of Duplicons between Human and Chimpanzee

Human and other primate genomes consist of many segmental duplications (SDs) due to fixation of copy number variations (CNVs). Structure of these duplications within the human genome has been shown to be a complex mosaic composed of juxtaposed subunits (called duplicons). These duplicons are difficu...

Descripción completa

Detalles Bibliográficos
Autores principales: Chuang, Trees-Juen, Wu, Shian-Zu, Huang, Yao-Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747353/
https://www.ncbi.nlm.nih.gov/pubmed/23984331
http://dx.doi.org/10.1155/2013/264532
Descripción
Sumario:Human and other primate genomes consist of many segmental duplications (SDs) due to fixation of copy number variations (CNVs). Structure of these duplications within the human genome has been shown to be a complex mosaic composed of juxtaposed subunits (called duplicons). These duplicons are difficult to be uncovered from the mosaic repeat structure. In addition, the distribution and evolution of duplicons among primates are still poorly investigated. In this paper, we develop a statistical framework for discovering duplicons via integration of a Hidden Markov Model (HMM) and a permutation test. Our comparative analysis indicates that the mosaic structure of duplicons is common in CNV/SD regions of both human and chimpanzee genomes, and a subset of core duplicons is shared by the majority of CNVs/SDs. Phylogenetic analyses using duplicons suggested that most CNVs/SDs share common duplication ancestry. Many human/chimpanzee duplicons flank both ends of CNVs, which may be hotspots of nonallelic homologous recombination.