Cargando…
Modeling language and cognition with deep unsupervised learning: a tutorial overview
Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical genera...
Autores principales: | Zorzi, Marco, Testolin, Alberto, Stoianov, Ivilin P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747356/ https://www.ncbi.nlm.nih.gov/pubmed/23970869 http://dx.doi.org/10.3389/fpsyg.2013.00515 |
Ejemplares similares
-
Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists
por: Testolin, Alberto, et al.
Publicado: (2013) -
Generative processing underlies the mutual enhancement of arithmetic fluency and math-grounding number sense
por: Stoianov, Ivilin P.
Publicado: (2014) -
Flexible intentions: An Active Inference theory
por: Priorelli, Matteo, et al.
Publicado: (2023) -
Deep Learning Tutorial
por: SADOWSKI, Peter
Publicado: (2015) -
Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions
por: Testolin, Alberto, et al.
Publicado: (2016)