Cargando…

A Chemically Defined Medium for Rabbit Embryo Cryopreservation

This study evaluates a new synthetic substitute (CRYO3, Ref. 5617, Stem Alpha, France) for animal-based products in rabbit embryo cryopreservation solutions. This evaluation was performed using two approaches: a thermodynamic approach using differential scanning calorimetry and a biological approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Bruyère, Pierre, Baudot, Anne, Joly, Thierry, Commin, Loris, Pillet, Elodie, Guérin, Pierre, Louis, Gérard, Josson-Schramme, Anne, Buff, Samuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748060/
https://www.ncbi.nlm.nih.gov/pubmed/23977074
http://dx.doi.org/10.1371/journal.pone.0071547
Descripción
Sumario:This study evaluates a new synthetic substitute (CRYO3, Ref. 5617, Stem Alpha, France) for animal-based products in rabbit embryo cryopreservation solutions. This evaluation was performed using two approaches: a thermodynamic approach using differential scanning calorimetry and a biological approach using rabbit embryo slow-freezing. During the experiment, foetal calf serum (FCS) was used as a reference. Because FCS varies widely by supplier, three different FCS were selected for the thermodynamic approach. The rabbit embryo slow-freezing solutions were made from Dulbecco's phosphate buffer saline containing 1.5 M Dimethyl Sulfoxide and 18% (v.v(−1)) of CRYO3 or 18% (v.v(−1)) of FCS. These solutions were evaluated using four characteristics: the end of melting temperature, the enthalpy of crystallisation (thermodynamic approach) and the embryo survival rates after culture and embryo transfer (biological approach). In the thermodynamic approach, the solutions containing one of the three different FCS had similar mean thermodynamic characteristics but had different variabilities in the overall data with aberrant values. The solution containing CRYO3 had similar thermodynamic properties when compared to those containing FCS. Moreover, no aberrant value was measured in the solution containing CRYO3. This solution appears to be more stable than the solutions containing a FCS. In the biological approach, the in vitro embryo survival rates obtained with the solution containing CRYO3 (73.7% and 81.3%) and with the solution containing a FCS (77.6% and 71.9%) were similar (p = 0.7). Nevertheless, during the in vivo evaluation, the implantation rate (21.8%) and the live-foetuses rate (18.8%) of the CRYO3 group were significantly higher than the implantation rate (7.1%, p = 0.0002) and the live-foetuses rate (5.3%, p = 0.0002) of the FCS group. The pregnancy rate was also higher in the CRYO3 group compared to the FCS group (81.3% and 43.8%, respectively, p = 0.066). We conclude that CRYO3 can be used as a chemically defined substitute for animal-based products in rabbit embryo cryopreservation solutions.