Cargando…

ISG12 is a critical modulator of innate immune responses in murine models of sepsis()

Sepsis is still a major burden for our society with high incidence of morbidity and mortality each year. Molecular mechanisms underlying the systemic inflammatory response syndrome (SIRS) associated with sepsis are still ill defined and most therapies developed to target the acute inflammatory compo...

Descripción completa

Detalles Bibliográficos
Autores principales: Uhrin, P., Perkmann, T., Binder, B., Schabbauer, G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748340/
https://www.ncbi.nlm.nih.gov/pubmed/23747037
http://dx.doi.org/10.1016/j.imbio.2013.04.009
_version_ 1782281054537646080
author Uhrin, P.
Perkmann, T.
Binder, B.
Schabbauer, G.
author_facet Uhrin, P.
Perkmann, T.
Binder, B.
Schabbauer, G.
author_sort Uhrin, P.
collection PubMed
description Sepsis is still a major burden for our society with high incidence of morbidity and mortality each year. Molecular mechanisms underlying the systemic inflammatory response syndrome (SIRS) associated with sepsis are still ill defined and most therapies developed to target the acute inflammatory component of the disease are insufficient. Recently the role of nuclear receptors (NRs) became a major topic of interest in transcriptional regulation of inflammatory processes. Nuclear receptors, such as the peroxisome proliferators-activated receptors (PPARs), have been demonstrated to exert anti-inflammatory properties by interfering with the NFκB pathway. We identified the nuclear envelope protein, interferon stimulated gene 12 (ISG12), which directly interacts with NRs. ISG12 is a co-factor stimulating nuclear export of NRs, thereby reducing the anti-inflammatory potential of NRs such as NR4A1. To examine the role of ISG12 in acute inflammatory processes we used recently generated ISG12 deficient mice. We can clearly demonstrate that lack of ISG12 prolongs survival in experimental sepsis and endotoxemia. Furthermore we can show that several acute inflammatory parameters, such as systemic IL6 cytokine levels, are downregulated in septic ISG12−/− animals. Consistently, similar results were obtained in in vitro experiments in peritoneal macrophages derived from ISG12 deficient mice. In contrast, mice deficient for the nuclear receptor NR4A1 exhibited an exacerbated innate immune response, and showed a significantly higher mortality after lethal endotoxemic challenge. This dramatic phenotype could be restored in ISG12/NR4A1 double deficient mice. We conclude from our data in vitro and in vivo that ISG12 is a novel modulator of innate immune responses regulating anti-inflammatory nuclear receptors such as NR4A1.
format Online
Article
Text
id pubmed-3748340
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-37483402013-09-01 ISG12 is a critical modulator of innate immune responses in murine models of sepsis() Uhrin, P. Perkmann, T. Binder, B. Schabbauer, G. Immunobiology Article Sepsis is still a major burden for our society with high incidence of morbidity and mortality each year. Molecular mechanisms underlying the systemic inflammatory response syndrome (SIRS) associated with sepsis are still ill defined and most therapies developed to target the acute inflammatory component of the disease are insufficient. Recently the role of nuclear receptors (NRs) became a major topic of interest in transcriptional regulation of inflammatory processes. Nuclear receptors, such as the peroxisome proliferators-activated receptors (PPARs), have been demonstrated to exert anti-inflammatory properties by interfering with the NFκB pathway. We identified the nuclear envelope protein, interferon stimulated gene 12 (ISG12), which directly interacts with NRs. ISG12 is a co-factor stimulating nuclear export of NRs, thereby reducing the anti-inflammatory potential of NRs such as NR4A1. To examine the role of ISG12 in acute inflammatory processes we used recently generated ISG12 deficient mice. We can clearly demonstrate that lack of ISG12 prolongs survival in experimental sepsis and endotoxemia. Furthermore we can show that several acute inflammatory parameters, such as systemic IL6 cytokine levels, are downregulated in septic ISG12−/− animals. Consistently, similar results were obtained in in vitro experiments in peritoneal macrophages derived from ISG12 deficient mice. In contrast, mice deficient for the nuclear receptor NR4A1 exhibited an exacerbated innate immune response, and showed a significantly higher mortality after lethal endotoxemic challenge. This dramatic phenotype could be restored in ISG12/NR4A1 double deficient mice. We conclude from our data in vitro and in vivo that ISG12 is a novel modulator of innate immune responses regulating anti-inflammatory nuclear receptors such as NR4A1. Elsevier 2013-09 /pmc/articles/PMC3748340/ /pubmed/23747037 http://dx.doi.org/10.1016/j.imbio.2013.04.009 Text en © 2013 Elsevier GmbH. This document may be redistributed and reused, subject to certain conditions (http://www.elsevier.com/wps/find/authorsview.authors/supplementalterms1.0) .
spellingShingle Article
Uhrin, P.
Perkmann, T.
Binder, B.
Schabbauer, G.
ISG12 is a critical modulator of innate immune responses in murine models of sepsis()
title ISG12 is a critical modulator of innate immune responses in murine models of sepsis()
title_full ISG12 is a critical modulator of innate immune responses in murine models of sepsis()
title_fullStr ISG12 is a critical modulator of innate immune responses in murine models of sepsis()
title_full_unstemmed ISG12 is a critical modulator of innate immune responses in murine models of sepsis()
title_short ISG12 is a critical modulator of innate immune responses in murine models of sepsis()
title_sort isg12 is a critical modulator of innate immune responses in murine models of sepsis()
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748340/
https://www.ncbi.nlm.nih.gov/pubmed/23747037
http://dx.doi.org/10.1016/j.imbio.2013.04.009
work_keys_str_mv AT uhrinp isg12isacriticalmodulatorofinnateimmuneresponsesinmurinemodelsofsepsis
AT perkmannt isg12isacriticalmodulatorofinnateimmuneresponsesinmurinemodelsofsepsis
AT binderb isg12isacriticalmodulatorofinnateimmuneresponsesinmurinemodelsofsepsis
AT schabbauerg isg12isacriticalmodulatorofinnateimmuneresponsesinmurinemodelsofsepsis