Cargando…
The Time Course Effects of Electroacupuncture on Promoting Skeletal Muscle Regeneration and Inhibiting Excessive Fibrosis after Contusion in Rabbits
The aim of this study was to investigate the longitudinal effects of electroacupuncture (EA) on Zusanli (ST36) and Ashi acupoints in promoting skeletal muscle regeneration and inhibiting excessive fibrosis after contusion in rabbits. Sixty rabbits were randomly divided into four groups: normal, cont...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748402/ https://www.ncbi.nlm.nih.gov/pubmed/23990848 http://dx.doi.org/10.1155/2013/869398 |
Sumario: | The aim of this study was to investigate the longitudinal effects of electroacupuncture (EA) on Zusanli (ST36) and Ashi acupoints in promoting skeletal muscle regeneration and inhibiting excessive fibrosis after contusion in rabbits. Sixty rabbits were randomly divided into four groups: normal, contusion, EA, and recombinant human insulin-like growth factor-I (rhIGF-I). An acute skeletal muscle contusion was produced on the right gastrocnemius (GM) by an instrument-based drop-mass technique. EA was performed for 15 minutes every two days with 0.4 mA (2 Hz), and GM injections were executed with rhIGF-I (0.25 mL once a week). Rabbits treated with EA had a higher T-SOD and T-AOC serum activities and lower MDA serum level, the blood perfusion of which was also significantly higher. In the EA group, the diameter of the myofibril was uniform and the arrangement was regular, contrary to the contusion group. The number and diameter of regenerative myofibers and MHC expression were increased in the EA group. EA treatment significantly decreased fibrosis formation and reduced both GDF-8 and p-Smad2/3 expressions in injured muscle. Our data indicate that EA may promote myofiber regeneration and reduce excessive fibrosis by improving blood flow and antioxidant capacities. Additionally, EA may regulate signaling factor expression after contusion. |
---|