Cargando…
Tracking Lung Tumors in Orthogonal X-Rays
This paper presents a computationally very efficient, robust, automatic tracking method that does not require any implanted fiducials for low-contrast tumors. First, it generates a set of motion hypotheses and computes corresponding feature vectors in local windows within orthogonal-axis X-ray image...
Autores principales: | Li, Feng, Porikli, Fatih |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748426/ https://www.ncbi.nlm.nih.gov/pubmed/23986789 http://dx.doi.org/10.1155/2013/650463 |
Ejemplares similares
-
Feasibility study of deep learning‐based markerless real‐time lung tumor tracking with orthogonal X‐ray projection images
por: Zhou, Dejun, et al.
Publicado: (2022) -
2D/3D Non-Rigid Image Registration via Two Orthogonal X-ray Projection Images for Lung Tumor Tracking
por: Dong, Guoya, et al.
Publicado: (2023) -
Markerless Lung Tumor Motion Tracking by Dynamic Decomposition of X-Ray Image Intensity
por: Homma, Noriyasu, et al.
Publicado: (2013) -
Ptychographic X-ray speckle tracking
por: Morgan, Andrew J., et al.
Publicado: (2020) -
Automatic measurement of air gap for proton therapy using orthogonal x‐ray imaging with radiopaque wires
por: Ramesh, Pavitra, et al.
Publicado: (2018)