Cargando…

WT1 protein expression in astrocytic tumors and its relationship with cellular proliferation index

BACKGROUND: Although Wilms’ tumor gene (WT1) was initially known as a tumor marker in Wilms’ tumor, nowadays its role is well known in other sorts of malignancy. This study aimed to evaluate WT1 protein expression levels and its association with cellular proliferation in astrocytic brain tumors by i...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahzouni, Parvin, Meghdadi, Zahra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748637/
https://www.ncbi.nlm.nih.gov/pubmed/23977661
http://dx.doi.org/10.4103/2277-9175.108772
Descripción
Sumario:BACKGROUND: Although Wilms’ tumor gene (WT1) was initially known as a tumor marker in Wilms’ tumor, nowadays its role is well known in other sorts of malignancy. This study aimed to evaluate WT1 protein expression levels and its association with cellular proliferation in astrocytic brain tumors by immunohistochemical methods. MATERIALS AND METHODS: This cross-sectional study performed on 73 randomly selected archived tissue samples of astrocytic brain tumors. Sections were observed after immunohistochemical staining regarding WT1 protein expression and MIB-1 staining index. Tumors were classified based on World Health Organization grading system. RESULTS: WT1 protein expression was seen in the majority of samples (97.3%) with significantly higher index in high-grade tumors (P<0.001). MIB-1 staining index was also significantly higher in high-grade tumors (P<0.001). Moreover, a significantly positive correlation was found between WT1 protein expression and MIB-1 staining index (r: 0.64, P<0.001). CONCLUSION: Astrocytic brain tumors express WT1 protein. It was also found that high-grade tumors are accompanied with higher WT1 protein expression, which is correlated with MIB-1 staining index. WT1 can be used as a marker of malignant cell proliferation and diagnostic tool to differentiate normal astrocytes from neoplastic cells.