Cargando…
Development and Validation of a Clinical Trial Patient Stratification Assay That Interrogates 27 Mutation Sites in MAPK Pathway Genes
Somatic mutations identified on genes related to the cancer-developing signaling pathways have drawn attention in the field of personalized medicine in recent years. Treatments developed to target a specific signaling pathway may not be effective when tumor activating mutations occur downstream of t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749116/ https://www.ncbi.nlm.nih.gov/pubmed/23991070 http://dx.doi.org/10.1371/journal.pone.0072239 |
_version_ | 1782281147429945344 |
---|---|
author | Chang, Ken C. N. Galuska, Stefan Weiner, Russell Marton, Matthew J. |
author_facet | Chang, Ken C. N. Galuska, Stefan Weiner, Russell Marton, Matthew J. |
author_sort | Chang, Ken C. N. |
collection | PubMed |
description | Somatic mutations identified on genes related to the cancer-developing signaling pathways have drawn attention in the field of personalized medicine in recent years. Treatments developed to target a specific signaling pathway may not be effective when tumor activating mutations occur downstream of the target and bypass the targeted mechanism. For instance, mutations detected in KRAS/BRAF/NRAS genes can lead to EGFR-independent intracellular signaling pathway activation. Most patients with these mutations do not respond well to anti-EGFR treatment. In an effort to detect various mutations in FFPE tissue samples among multiple solid tumor types for patient stratification many mutation assays were evaluated. Since there were more than 30 specific mutations among three targeted RAS/RAF oncogenes that could activate MAPK pathway genes, a custom designed Single Nucleotide Primer Extension (SNPE) multiplexing mutation assay was developed and analytically validated as a clinical trial assay. Throughout the process of developing and validating the assay we overcame many technical challenges which include: the designing of PCR primers for FFPE tumor tissue samples versus normal blood samples, designing of probes for detecting consecutive nucleotide double mutations, the kinetics and thermodynamics aspects of probes competition among themselves and against target PCR templates, as well as validating an assay when positive control tumor tissue or cell lines with specific mutations are not available. We used Next Generation sequencing to resolve discordant calls between the SNPE mutation assay and Sanger sequencing. We also applied a triplicate rule to reduce potential false positives and false negatives, and proposed special considerations including pre-define a cut-off percentage for detecting very low mutant copies in the wild-type DNA background. |
format | Online Article Text |
id | pubmed-3749116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37491162013-08-29 Development and Validation of a Clinical Trial Patient Stratification Assay That Interrogates 27 Mutation Sites in MAPK Pathway Genes Chang, Ken C. N. Galuska, Stefan Weiner, Russell Marton, Matthew J. PLoS One Research Article Somatic mutations identified on genes related to the cancer-developing signaling pathways have drawn attention in the field of personalized medicine in recent years. Treatments developed to target a specific signaling pathway may not be effective when tumor activating mutations occur downstream of the target and bypass the targeted mechanism. For instance, mutations detected in KRAS/BRAF/NRAS genes can lead to EGFR-independent intracellular signaling pathway activation. Most patients with these mutations do not respond well to anti-EGFR treatment. In an effort to detect various mutations in FFPE tissue samples among multiple solid tumor types for patient stratification many mutation assays were evaluated. Since there were more than 30 specific mutations among three targeted RAS/RAF oncogenes that could activate MAPK pathway genes, a custom designed Single Nucleotide Primer Extension (SNPE) multiplexing mutation assay was developed and analytically validated as a clinical trial assay. Throughout the process of developing and validating the assay we overcame many technical challenges which include: the designing of PCR primers for FFPE tumor tissue samples versus normal blood samples, designing of probes for detecting consecutive nucleotide double mutations, the kinetics and thermodynamics aspects of probes competition among themselves and against target PCR templates, as well as validating an assay when positive control tumor tissue or cell lines with specific mutations are not available. We used Next Generation sequencing to resolve discordant calls between the SNPE mutation assay and Sanger sequencing. We also applied a triplicate rule to reduce potential false positives and false negatives, and proposed special considerations including pre-define a cut-off percentage for detecting very low mutant copies in the wild-type DNA background. Public Library of Science 2013-08-21 /pmc/articles/PMC3749116/ /pubmed/23991070 http://dx.doi.org/10.1371/journal.pone.0072239 Text en © 2013 Chang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chang, Ken C. N. Galuska, Stefan Weiner, Russell Marton, Matthew J. Development and Validation of a Clinical Trial Patient Stratification Assay That Interrogates 27 Mutation Sites in MAPK Pathway Genes |
title | Development and Validation of a Clinical Trial Patient Stratification Assay That Interrogates 27 Mutation Sites in MAPK Pathway Genes |
title_full | Development and Validation of a Clinical Trial Patient Stratification Assay That Interrogates 27 Mutation Sites in MAPK Pathway Genes |
title_fullStr | Development and Validation of a Clinical Trial Patient Stratification Assay That Interrogates 27 Mutation Sites in MAPK Pathway Genes |
title_full_unstemmed | Development and Validation of a Clinical Trial Patient Stratification Assay That Interrogates 27 Mutation Sites in MAPK Pathway Genes |
title_short | Development and Validation of a Clinical Trial Patient Stratification Assay That Interrogates 27 Mutation Sites in MAPK Pathway Genes |
title_sort | development and validation of a clinical trial patient stratification assay that interrogates 27 mutation sites in mapk pathway genes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749116/ https://www.ncbi.nlm.nih.gov/pubmed/23991070 http://dx.doi.org/10.1371/journal.pone.0072239 |
work_keys_str_mv | AT changkencn developmentandvalidationofaclinicaltrialpatientstratificationassaythatinterrogates27mutationsitesinmapkpathwaygenes AT galuskastefan developmentandvalidationofaclinicaltrialpatientstratificationassaythatinterrogates27mutationsitesinmapkpathwaygenes AT weinerrussell developmentandvalidationofaclinicaltrialpatientstratificationassaythatinterrogates27mutationsitesinmapkpathwaygenes AT martonmatthewj developmentandvalidationofaclinicaltrialpatientstratificationassaythatinterrogates27mutationsitesinmapkpathwaygenes |