Cargando…

Salt-inducible kinases regulate growth through the Hippo signalling pathway in Drosophila

The specification of tissue size during development involves the coordinated action of many signalling pathways responding to organ-intrinsic signals, such as morphogen gradients, and systemic cues, such as nutrient status. The conserved Hippo (Hpo) pathway, which promotes both cell cycle exit and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wehr, Michael C., Holder, Maxine V., Gailite, Ieva, Saunders, Rebecca E., Maile, Tobias M., Ciirdaeva, Elena, Instrell, Rachael, Jiang, Ming, Howell, Michael, Rossner, Moritz J., Tapon, Nicolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749438/
https://www.ncbi.nlm.nih.gov/pubmed/23263283
http://dx.doi.org/10.1038/ncb2658
Descripción
Sumario:The specification of tissue size during development involves the coordinated action of many signalling pathways responding to organ-intrinsic signals, such as morphogen gradients, and systemic cues, such as nutrient status. The conserved Hippo (Hpo) pathway, which promotes both cell cycle exit and apoptosis, is a major determinant of size control.The pathway core is a kinase cassette, comprising the kinases Hpo and Warts (Wts) and the scaffold proteins Salvador (Sav) and Mats, which inactivates the pro-growth transcriptional co-activator Yorkie (Yki). We performed a split TEV-based genome-wide RNAi screen for modulators of Hpo signalling. We characterise the Drosophila salt-inducible kinases (Sik2 and Sik3) as negative regulators of Hpo signalling. Activated Sik kinases increase Yki target expression and promote tissue overgrowth through phosphorylation of Sav at Ser413. Since Sik kinases have been implicated in nutrient sensing, this suggests a link between the Hippo pathway and systemic growth control.