Cargando…
Cyclic di-GMP signalling and the regulation of bacterial virulence
Signal transduction pathways involving the second messenger cyclic di-GMP [bis-(3′-5′)-cyclic di-guanosine monophosphate] occur widely in bacteria where they act to link perception of environmental or intracellular cues and signals to specific alterations in cellular function. Such alterations can c...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for General Microbiology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749722/ https://www.ncbi.nlm.nih.gov/pubmed/23704785 http://dx.doi.org/10.1099/mic.0.068189-0 |
_version_ | 1782477033334374400 |
---|---|
author | Ryan, Robert P. |
author_facet | Ryan, Robert P. |
author_sort | Ryan, Robert P. |
collection | PubMed |
description | Signal transduction pathways involving the second messenger cyclic di-GMP [bis-(3′-5′)-cyclic di-guanosine monophosphate] occur widely in bacteria where they act to link perception of environmental or intracellular cues and signals to specific alterations in cellular function. Such alterations can contribute to bacterial lifestyle transitions including biofilm formation and virulence. The cellular levels of the nucleotide are controlled through the opposing activities of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs). The GGDEF domain of DGCs catalyses the synthesis of cyclic di-GMP from GTP, whereas EAL or HD-GYP domains in different classes of PDE catalyse cyclic di-GMP degradation to pGpG and GMP. We are now beginning to understand how alterations in cyclic di-GMP exert a regulatory action through binding to diverse receptors or effectors that include a small ‘adaptor’ protein domain called PilZ, transcription factors and riboswitches. The regulatory action of enzymically active cyclic di-GMP signalling proteins is, however, not restricted to an influence on the level of nucleotide. Here, I will discuss our recent findings that highlight the role that protein–protein interactions involving these signalling proteins have in regulating functions that contribute to bacterial virulence. |
format | Online Article Text |
id | pubmed-3749722 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Society for General Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-37497222013-08-28 Cyclic di-GMP signalling and the regulation of bacterial virulence Ryan, Robert P. Microbiology (Reading) SGM Prize Lecture Signal transduction pathways involving the second messenger cyclic di-GMP [bis-(3′-5′)-cyclic di-guanosine monophosphate] occur widely in bacteria where they act to link perception of environmental or intracellular cues and signals to specific alterations in cellular function. Such alterations can contribute to bacterial lifestyle transitions including biofilm formation and virulence. The cellular levels of the nucleotide are controlled through the opposing activities of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs). The GGDEF domain of DGCs catalyses the synthesis of cyclic di-GMP from GTP, whereas EAL or HD-GYP domains in different classes of PDE catalyse cyclic di-GMP degradation to pGpG and GMP. We are now beginning to understand how alterations in cyclic di-GMP exert a regulatory action through binding to diverse receptors or effectors that include a small ‘adaptor’ protein domain called PilZ, transcription factors and riboswitches. The regulatory action of enzymically active cyclic di-GMP signalling proteins is, however, not restricted to an influence on the level of nucleotide. Here, I will discuss our recent findings that highlight the role that protein–protein interactions involving these signalling proteins have in regulating functions that contribute to bacterial virulence. Society for General Microbiology 2013-07 /pmc/articles/PMC3749722/ /pubmed/23704785 http://dx.doi.org/10.1099/mic.0.068189-0 Text en © 2013 SGM http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | SGM Prize Lecture Ryan, Robert P. Cyclic di-GMP signalling and the regulation of bacterial virulence |
title | Cyclic di-GMP signalling and the regulation of bacterial virulence |
title_full | Cyclic di-GMP signalling and the regulation of bacterial virulence |
title_fullStr | Cyclic di-GMP signalling and the regulation of bacterial virulence |
title_full_unstemmed | Cyclic di-GMP signalling and the regulation of bacterial virulence |
title_short | Cyclic di-GMP signalling and the regulation of bacterial virulence |
title_sort | cyclic di-gmp signalling and the regulation of bacterial virulence |
topic | SGM Prize Lecture |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749722/ https://www.ncbi.nlm.nih.gov/pubmed/23704785 http://dx.doi.org/10.1099/mic.0.068189-0 |
work_keys_str_mv | AT ryanrobertp cyclicdigmpsignallingandtheregulationofbacterialvirulence |