Cargando…
Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa
Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750012/ https://www.ncbi.nlm.nih.gov/pubmed/23991093 http://dx.doi.org/10.1371/journal.pone.0072329 |
_version_ | 1782477062119882752 |
---|---|
author | Yin, Yeshi Withers, T. Ryan Wang, Xin Yu, Hongwei D. |
author_facet | Yin, Yeshi Withers, T. Ryan Wang, Xin Yu, Hongwei D. |
author_sort | Yin, Yeshi |
collection | PubMed |
description | Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through suppressor mutations. We screened a mariner transposon library using CF149, a non-mucoid clinical isolate with a misssense mutation in algU (AlgU(A61V)). The wild type AlgU is a stress-related sigma factor that activates transcription of alginate biosynthesis. Three mucoid mutants were identified with transposon insertions that caused 1) an overexpression of AlgU(A61V), 2) an overexpression of the stringent starvation protein A (SspA), and 3) a reduced expression of the major sigma factor RpoD (σ(70)). Induction of AlgU(A61V) in trans caused conversion to mucoidy in CF149 and PAO1DalgU, suggesting that AlgU(A61V) is functional in activating alginate production. Furthermore, the level of AlgU(A61V) was increased in all three mutants relative to CF149. However, compared to the wild type AlgU, AlgU(A61V) had a reduced activity in promoting alginate production in PAO1ΔalgU. SspA and three other anti-σ(70) orthologues, P. aeruginosa AlgQ, E. coli Rsd, and T4 phage AsiA, all induced mucoidy, suggesting that reducing activity of RpoD is linked to mucoid conversion in CF149. Conversely, RpoD overexpression resulted in suppression of mucoidy in all mucoid strains tested, indicating that sigma factor competition can regulate mucoidy. Additionally, an RpoD-dependent promoter (P(ssrA)) was more active in non-mucoid strains than in isogenic mucoid variants. Altogether, our results indicate that the anti-σ(70) factors can induce conversion to mucoidy in P. aeruginosa CF149 with algU-suppressor mutation via modulation of RpoD. |
format | Online Article Text |
id | pubmed-3750012 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37500122013-08-29 Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa Yin, Yeshi Withers, T. Ryan Wang, Xin Yu, Hongwei D. PLoS One Research Article Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through suppressor mutations. We screened a mariner transposon library using CF149, a non-mucoid clinical isolate with a misssense mutation in algU (AlgU(A61V)). The wild type AlgU is a stress-related sigma factor that activates transcription of alginate biosynthesis. Three mucoid mutants were identified with transposon insertions that caused 1) an overexpression of AlgU(A61V), 2) an overexpression of the stringent starvation protein A (SspA), and 3) a reduced expression of the major sigma factor RpoD (σ(70)). Induction of AlgU(A61V) in trans caused conversion to mucoidy in CF149 and PAO1DalgU, suggesting that AlgU(A61V) is functional in activating alginate production. Furthermore, the level of AlgU(A61V) was increased in all three mutants relative to CF149. However, compared to the wild type AlgU, AlgU(A61V) had a reduced activity in promoting alginate production in PAO1ΔalgU. SspA and three other anti-σ(70) orthologues, P. aeruginosa AlgQ, E. coli Rsd, and T4 phage AsiA, all induced mucoidy, suggesting that reducing activity of RpoD is linked to mucoid conversion in CF149. Conversely, RpoD overexpression resulted in suppression of mucoidy in all mucoid strains tested, indicating that sigma factor competition can regulate mucoidy. Additionally, an RpoD-dependent promoter (P(ssrA)) was more active in non-mucoid strains than in isogenic mucoid variants. Altogether, our results indicate that the anti-σ(70) factors can induce conversion to mucoidy in P. aeruginosa CF149 with algU-suppressor mutation via modulation of RpoD. Public Library of Science 2013-08-22 /pmc/articles/PMC3750012/ /pubmed/23991093 http://dx.doi.org/10.1371/journal.pone.0072329 Text en © 2013 Yin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Yin, Yeshi Withers, T. Ryan Wang, Xin Yu, Hongwei D. Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa |
title | Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa
|
title_full | Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa
|
title_fullStr | Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa
|
title_full_unstemmed | Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa
|
title_short | Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa
|
title_sort | evidence for sigma factor competition in the regulation of alginate production by pseudomonas aeruginosa |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750012/ https://www.ncbi.nlm.nih.gov/pubmed/23991093 http://dx.doi.org/10.1371/journal.pone.0072329 |
work_keys_str_mv | AT yinyeshi evidenceforsigmafactorcompetitionintheregulationofalginateproductionbypseudomonasaeruginosa AT witherstryan evidenceforsigmafactorcompetitionintheregulationofalginateproductionbypseudomonasaeruginosa AT wangxin evidenceforsigmafactorcompetitionintheregulationofalginateproductionbypseudomonasaeruginosa AT yuhongweid evidenceforsigmafactorcompetitionintheregulationofalginateproductionbypseudomonasaeruginosa |